终身会员
搜索
    上传资料 赚现金
    人教版高中数学选择性必修第三册6.1分类加法计数原理与分步乘法计数原理(1)B组能力提高训练(含解析)
    立即下载
    加入资料篮
    人教版高中数学选择性必修第三册6.1分类加法计数原理与分步乘法计数原理(1)B组能力提高训练(含解析)01
    人教版高中数学选择性必修第三册6.1分类加法计数原理与分步乘法计数原理(1)B组能力提高训练(含解析)02
    人教版高中数学选择性必修第三册6.1分类加法计数原理与分步乘法计数原理(1)B组能力提高训练(含解析)03
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版高中数学选择性必修第三册6.1分类加法计数原理与分步乘法计数原理(1)B组能力提高训练(含解析)

    展开
    这是一份人教版高中数学选择性必修第三册6.1分类加法计数原理与分步乘法计数原理(1)B组能力提高训练(含解析),共7页。

    1.(2021·吉林扶余市第一中学高二)若准备用1个字符给一本书编号,其中可用字符为字母,,,也可用数字字符1,2,3,4,5,则不同的编号有( )
    A.2种B.5种C.8种D.15种
    2.(2021·全国高二课时练)设M、N是两个非空集合,定义M⊗N={(a,b)|a∈M,b∈N},若P={0,1,2 },Q={1,2},则P⊗Q中元素的个数是( )
    A.4B.9C.6D.3
    3.(2021·陕西西安市高二期末)将3名防控新冠疫情志愿者全部分配给2个不同的社区服务,不同的分配方案有( )
    A.12种B.9种C.8种D.6种
    4.(2021·全国高二课时练)若一位三位数的自然数各位数字中,有且仅有两个数字一样,我们就把这样的三位数定义为“单重数”.例如:232,114等,则不超过200的“单重数”中,从小到大排列第22个“单重数”是( )
    A.166B.171C.181D.188
    5.(多选题)(2021·全国高二课时练)有4位同学报名参加三个不同的社团,则下列说法正确的是( )
    A. 每位同学限报其中一个社团,则不同的报名方法共有种
    B. 每位同学限报其中一个社团,则不同的报名方法共有种
    C. 每个社团限报一个人,则不同的报名方法共有24种
    D. 每个社团限报一个人,则不同的报名方法共有种
    6. (多选题)(2021·辽宁本溪市·高二月考)几只猴子在一棵枯树上玩耍,假设它们均不慎失足下落,已知:(1)甲在下落的过程中依次撞击到树枝,,;(2)乙在下落的过程中依次撞击到树枝,,;(3)丙在下落的过程中依次撞击到树枝,,;(4)丁在下落的过程中依次撞击到树枝,,;(5)戊在下落的过程中依次撞击到树枝,,,下列结论正确的是( )
    A.最高处的树枝为、当中的一个
    B.最低处的树枝一定是
    C.这九棵树枝从高到低不同的顺序共有33种
    D.这九棵树枝从高到低不同的顺序共有32种
    二、填空题
    7.(2021·全国高二课时练)某县总工会利用业余时间开设太极、书法、绘画三个培训班,甲、乙、丙、丁四人报名参加,每人只报名参加一项,且甲乙不参加同一项,则不同的报名方法种数为_____________.
    8.数学与文学有许多奇妙的联系,如诗中有回文诗“儿忆父兮妻忆夫”,既可以顺读也可以逆读.数学中有回文数,如343 ,12521等.两位数的回文数有11 ,22 ,3,……,99共9个,则在三位数的回文数中偶数的个数是_____________.
    9.(2020·福建漳州高二月考)高三年段有四个老师分别为,这四位老师要去监考四个班级,每个老师只能监考一个班级,一个班级只能有一个监考老师.现要求老师不能监考班,老师不能监考班,老师不能监考班,老师不能监考班,则不同的监考方式有____种.
    10.(2021·全国高二课时练习)工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.
    三、解答题
    11.已知集合,若a,b,c∈M,则:
    (1)可以表示多少个不同的二次函数?
    (2)可以表示多少个图象开口向上的二次函数?
    12.现某学校共有34人自愿组成数学建模社团,其中高一年级13人,高二年级12人,高三年级9人.
    (1)选其中一人为负责人,共有多少种不同的选法?
    (2)每个年级选一名组长,有多少种不同的选法?
    (3)选两人作为社团发言人,这两人需要来自不同的年级,有多少种不同的选法?
    人教版高中数学选择性必修第三册
    6.1分类加法计数原理与分步乘法计数原理(1)B组能力提高训练(解析版)
    一、选择题
    1.(2021·吉林扶余市第一中学高二)若准备用1个字符给一本书编号,其中可用字符为字母,,,也可用数字字符1,2,3,4,5,则不同的编号有( )
    A.2种B.5种C.8种D.15种
    【答案】C
    【详解】由题意这本书的编号可能是字母,,,有3种,可能是数字:1,2,3,4,5,有效种,共有3+5=8种.故选:C.
    2.(2021·全国高二课时练)设M、N是两个非空集合,定义M⊗N={(a,b)|a∈M,b∈N},若P={0,1,2 },Q={1,2},则P⊗Q中元素的个数是( )
    A.4B.9C.6D.3
    【答案】C
    【详解】因为P={0,1,2},Q={1,2},所以a有3种选法,b有2种取法,
    根据乘法原理,可得P⊗Q中元素的个数是:3×2=6(个).故选C.
    3.(2021·陕西西安市高二期末)将3名防控新冠疫情志愿者全部分配给2个不同的社区服务,不同的分配方案有( )
    A.12种B.9种C.8种D.6种
    【答案】C
    【详解】每名防控新冠疫情志愿者都有两种不同的分配方法,根据分步计数原理可知,不同的分配方案总数为种.故选:C
    4.(2021·全国高二课时练)若一位三位数的自然数各位数字中,有且仅有两个数字一样,我们就把这样的三位数定义为“单重数”.例如:232,114等,则不超过200的“单重数”中,从小到大排列第22个“单重数”是( )
    A.166B.171C.181D.188
    【答案】B
    【详解】由题意可得:不超过200的数,
    两个数字一样同为0时,有100,200有2个,
    两个数字一样同为1时,有110,101,112,121,113,131,一直到191,119,共18个,
    两个数字一样同为2时,有122,有1个
    同理,两个数字一样同为3,4,5,6,7,8,9时各1个,
    综上,不超过200的“单重数”共有,
    其中最大的是200,较小的依次为199,191,188,181,177,171,
    故第22个“单重数”为171,故选:B.
    5.(多选题)(2021·全国高二课时练)有4位同学报名参加三个不同的社团,则下列说法正确的是( )
    A. 每位同学限报其中一个社团,则不同的报名方法共有种
    B. 每位同学限报其中一个社团,则不同的报名方法共有种
    C. 每个社团限报一个人,则不同的报名方法共有24种
    D. 每个社团限报一个人,则不同的报名方法共有种
    【答案】AC
    【详解】对于A选项, 第1个同学有3种报法,第2个同学有3种报法,后面的2个同学也有3种报法,根据分步计数原理共有种结果,A正确,B错误;对于C选项,每个社团限报一个人,则第1个社团有4种选择,第2个社团有3种选择,第3个社团有2种选择,根据分步计数原理共有种结果,C正确,D错误.
    6. (多选题)(2021·辽宁本溪市·高二月考)几只猴子在一棵枯树上玩耍,假设它们均不慎失足下落,已知:(1)甲在下落的过程中依次撞击到树枝,,;(2)乙在下落的过程中依次撞击到树枝,,;(3)丙在下落的过程中依次撞击到树枝,,;(4)丁在下落的过程中依次撞击到树枝,,;(5)戊在下落的过程中依次撞击到树枝,,,下列结论正确的是( )
    A.最高处的树枝为、当中的一个
    B.最低处的树枝一定是
    C.这九棵树枝从高到低不同的顺序共有33种
    D.这九棵树枝从高到低不同的顺序共有32种
    【答案】AC
    【详解】解:由题判断出部分树枝由高到低的顺序为,还剩下,,,且树枝比高,树枝在树枝,之间,树枝比低,故选项正确;
    先看树枝,有4种可能,若在,之间,
    则有3种可能:①在,之间,有5种可能;
    ②在,之间,有4种可能;
    ③在,之间,有3种可能,
    此时树枝的高低顺序有(种)。
    若不在,之间,则有3种可能,有2中可能,
    若在,之间,则有3种可能,
    若在,之间,则有三种可能,
    此时树枝的高低顺序有(种)可能,
    故这九根树枝从高到低不同的顺序共有种,故选项正确.故选:AC.
    二、填空题
    7.(2021·全国高二课时练)某县总工会利用业余时间开设太极、书法、绘画三个培训班,甲、乙、丙、丁四人报名参加,每人只报名参加一项,且甲乙不参加同一项,则不同的报名方法种数为_____________.
    【答案】54
    【详解】甲有三个培训可选,甲乙不参加同一项,所以乙有二个培训可选,丙、丁各有三个培训可选,根据乘法计数原理,不同的报名方法种数为.
    8.数学与文学有许多奇妙的联系,如诗中有回文诗“儿忆父兮妻忆夫”,既可以顺读也可以逆读.数学中有回文数,如343 ,12521等.两位数的回文数有11 ,22 ,3,……,99共9个,则在三位数的回文数中偶数的个数是_____________.
    【答案】40
    【详解】由题意,若三位数的回文数是偶数,则末(首)位可能为,,,.如果末(首)位为,中间一位数有种可能,同理可得,如果末(首)位为或或,
    中间一位数均有种可能,所以有个.
    9.(2020·福建漳州高二月考)高三年段有四个老师分别为,这四位老师要去监考四个班级,每个老师只能监考一个班级,一个班级只能有一个监考老师.现要求老师不能监考班,老师不能监考班,老师不能监考班,老师不能监考班,则不同的监考方式有____种.
    【答案】9
    【解析】当老师监考班时,剩下的三位老师有3种情况,同理当老师监考班时,也有3种,当老师监考班时,也有3种,共9种,
    10.(2021·全国高二课时练习)工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.
    【答案】60
    【解析】根据题意,第一个可以从6个钉里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号钉的时候,第二个可以选3,4,5号钉,依次选下去,可以得到共有10种方法,所以总共有种方法,故答案是60.
    三、解答题
    11.已知集合,若a,b,c∈M,则:
    (1)可以表示多少个不同的二次函数?
    (2)可以表示多少个图象开口向上的二次函数?
    【解析】(1)根据,表示二次函数,由此可判断a的取值情况,再分别判断b,c的取值情况,然后利用分步乘法计数原理求解.
    (2)根据二次函数的性质,开口向上,则,由此可判断a的取值情况,再分别判断b,c的取值情况,然后利用分步乘法计数原理求解.
    详解:
    (1)因为a不能取0,所以有5种取法,b有6种取法,c有6种取法,
    所以可以表示个不同的二次函数.
    (2)的图象开口向上时,a不能取小于等于0的数,所以有2种取法,b有6种取法,c有6种取法,
    所以可以表示个图象开口向上的二次函数
    12.现某学校共有34人自愿组成数学建模社团,其中高一年级13人,高二年级12人,高三年级9人.
    (1)选其中一人为负责人,共有多少种不同的选法?
    (2)每个年级选一名组长,有多少种不同的选法?
    (3)选两人作为社团发言人,这两人需要来自不同的年级,有多少种不同的选法?
    【解析】(1)根据题意,选其中一人为负责人,有3种情况,
    若选出的是高一学生,有13种情况,
    若选出的是高二学生,有12种情况,
    若选出的是高三学生,有9种情况,
    由分类计数原理可得,共有12+13+9=34种选法.
    (2)根据题意,从高一学生中选出1人,有13种情况;
    从高二学生中选出1人,有12种情况;
    从高三学生中选出1人,有9种情况;
    由分步计数原理,可得共有12×13×9=1404种选法.
    (3)根据题意,分三种情况讨论:
    若选出的是高一、高二学生,有12×13=156种情况,
    若选出的是高一、高三学生,有13×9=117种情况,
    若选出的是高二、高三学生,有12×9=108种情况,
    由分类计数原理可得,共有156+117+108=381种选法.
    相关试卷

    人教A版 (2019)第六章 计数原理6.1 分类加法计数原理与分步乘法计数原理同步测试题: 这是一份人教A版 (2019)<a href="/sx/tb_c4000351_t7/?tag_id=28" target="_blank">第六章 计数原理6.1 分类加法计数原理与分步乘法计数原理同步测试题</a>,文件包含61分类加法计数原理与分步乘法计数原理2-B提高练解析版docx、61分类加法计数原理与分步乘法计数原理2-B提高练学生版docx等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。

    高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理习题: 这是一份高中数学人教A版 (2019)选择性必修 第三册<a href="/sx/tb_c4000351_t7/?tag_id=28" target="_blank">6.1 分类加法计数原理与分步乘法计数原理习题</a>,文件包含新教材精创61分类加法计数原理与分步乘法计数原理1-B提高练解析版docx、新教材精创61分类加法计数原理与分步乘法计数原理1-B提高练学生版docx等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。

    高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理第1课时巩固练习: 这是一份高中数学人教A版 (2019)选择性必修 第三册<a href="/sx/tb_c4000351_t7/?tag_id=28" target="_blank">6.1 分类加法计数原理与分步乘法计数原理第1课时巩固练习</a>,共5页。试卷主要包含了算盘是中国古代的一项重要发明等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map