|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题19 三角形内接矩形相似模型-中考数学几何模型(重点专练)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      专题19 三角形内接矩形相似模型(教师版)-中考数学几何模型(重点专练).docx
    • 学生
      专题19 三角形内接矩形相似模型(学生版)-中考数学几何模型(重点专练).docx
    专题19 三角形内接矩形相似模型-中考数学几何模型(重点专练)01
    专题19 三角形内接矩形相似模型-中考数学几何模型(重点专练)02
    专题19 三角形内接矩形相似模型-中考数学几何模型(重点专练)03
    专题19 三角形内接矩形相似模型-中考数学几何模型(重点专练)01
    专题19 三角形内接矩形相似模型-中考数学几何模型(重点专练)02
    专题19 三角形内接矩形相似模型-中考数学几何模型(重点专练)03
    还剩27页未读, 继续阅读
    下载需要40学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题19 三角形内接矩形相似模型-中考数学几何模型(重点专练)

    展开
    这是一份专题19 三角形内接矩形相似模型-中考数学几何模型(重点专练),文件包含专题19三角形内接矩形相似模型教师版-中考数学几何模型重点专练docx、专题19三角形内接矩形相似模型学生版-中考数学几何模型重点专练docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。


    【模型】如图,四边形DEFG是△ABC的内接矩形,EF在BC边上,D、G分别在AB、AC边上,则△ADG∽△ABC,△ADN∽△ABM,△AGN∽△ACM,.
    【例1】如图,在中,AD是BC边上的高,在的内部,作一个正方形PQRS,若,,则正方形PQRS的边长为( )
    A.B.C.1D.
    【例2】如图,已知三角形铁皮的边,边上的高,要剪出一个正方形铁片,使、在上,、分别在、上,则正方形的边长________.
    【例3】如图,在△ABC中,∠C=90°,AC=BC,AB=8.点P从点A出发,以每秒2个单位长度的速度沿边AB向点B运动.过点P作PD⊥AB交折线AC﹣CB于点D,以PD为边在PD右侧做正方形PDEF.设正方形PDEF与△ABC重叠部分图形的面积为S,点P的运动时间为t秒(0<t<4).
    (1)当点D在边AC上时,正方形PDEF的边长为 (用含t的代数式表示).
    (2)当点E落在边BC上时,求t的值.
    (3)当点D在边AC上时,求S与t之间的函数关系式.
    (4)作射线PE交边BC于点G,连结DF.当DF=4EG时,直接写出t的值.
    一、单选题
    1.如图,矩形内接于,且边落在上,若,那么的长为( )
    A.B.C.D.
    2.如图,在Rt△ABC中,∠C=90°,放置边长分别为3,4,x的三个正方形,则x的值为( )
    A.12B.7C.6D.5
    3.如图,将一张面积为50的大三角形纸片沿着虚线剪成三张小三角形纸片与一张矩形纸片.根据图中标示的长度,则矩形纸片的面积为( )
    A.12B.18C.24D.30
    4.如图,在△ABC中,AB边上取一点P,画正方形PQMN,使Q,M在边BC上,N在边AC上,连接BN,在BN上截取NE=NM,连接EQ,EM,当时,则∠QEM度数为( )
    A.60°B.70°C.75°D.90°
    5.如图,在中,,,,若内接正方形的边长是x,则h、c、x的数量关系为( )
    A.B.C.D.
    6.我国古代数学著作《九章算法比类大全》有题如下:“方种芝麻斜种黍,勾股之田十亩无零数.九十股差方为界,勾差十步分明许.借问贤家如何取,多少黍田多少芝麻亩.算的二田无误处,智能才华算中举.”大意是:正方形田种芝麻,斜形(三角形)种黍,有一块直角三角形是10亩整.股差步,勾差步.请问黍田、芝麻各多少亩?(1亩平方步)答:( )
    A.艺麻田3.75亩,黍田6.25亩B.芝麻田3.25亩,黍田6.75亩
    C.芝麻田3.70亩,黍田6.30亩D.芝麻田3.30亩,黍田6.70亩
    二、填空题
    7.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6.在其内并排放入(不重叠)n个相同的小正方形纸片,使这些纸片的一边都在AB上,首尾两个正方形各有一个顶点D,E分别在AC,BC上,则小正方形的边长为 _____(用含n的代数式表示).
    8.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,在三角形内挖掉正方形CDEF,则正方形CDEF的边长为________.
    9.如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为_____.
    10.如图,矩形内接于,且边落在上.若,,,,那么的长为__.
    11.如图,在中,点F、G在上,点E、H分别在、上,四边形是矩形,是的高.,那么的长为____________.
    12.在中,,点在线段上,过点作于点,于点,使得四边形为正方形,此时,,则阴影部分面积为_________.
    三、解答题
    13.如图,己知直角三角形的铁片ABC的两直角边BC、AC的长分别为3cm和4cm,分别采用(1)、(2)两种剪法,剪出一块正方形铁片,为使所得的正方形面积最大,问哪一种剪法好?为什么?
    14.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,∠DEB=∠FCE,EF∥AB.
    (1)求证:△BDE∽△EFC;
    (2)设,△EFC的面积是20,求△ABC的面积.
    15.如图,在中,点D、E、F分别在AB、BC、AC边上,,.
    (1)求证:.
    (2)若,,求线段BE的长.
    16.一块三角形的余料,底边BC长1.8米,高AD=1米,如图.要利用它裁剪一个长宽比是3∶2的长方形,使长方形的长在BC上,另两个顶点在AB、AC上,求长方形的长EH和宽EF的长.
    17.我们已经学习了利用配方法解一元二次方程,其实配方法还有其他重要应用.
    例:已知x可取任何实数,试求二次三项式的最值.
    解:
    ∵无论x取何实数,总有.
    ∴,即无论x取何实数,有最小值,是.
    (1)问题:已知,试求y的最值.
    (2)【知识迁移】在中,是边上的高,矩形的顶点P、N分别在边上,顶点Q、M在边上,
    探究一:,求出矩形的最大面积的值;(提示:由矩形我们很容易证明,可以设,经过推导,用含有x的代数式表示出该矩形的面积,从而求得答案.)
    (3)探究二:,则矩形面积S的最大值___________.(用含a,h的代数式表示)
    18.如图,为一块铁板余料,,,,要把它加工成正方形小铁板,有如图所示的两种加工方案,请你分别计算这两种加工方案的正方形的边长.
    19.在△ABC中,BC=2,BC边上的高AD=1,P是BC上任一点,PEAB交AC于E,PFAC交AB于F.
    (1)设BP=x,将S△PEF用x表示;
    (2)当P在BC边上什么位置时,S值最大.
    20.课本中有一道作业题:有一块三角形余料ABC,它的边BC=12m,高线AD=8m.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长为多少米?小颖解得此题的答案为4.8m.
    (1)你知道小颖是怎么做的吗?请你写出解答过程?
    (2)善于反思,她又提出了如下的问题,如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.
    (3)如图3,小颖想如果这块余料形状改为Rt△ABC的斜板,已知∠A=90°,AB=8m,AC=6m,要把它加工成一个形状为平行四边形PQMN的工件,使MQ在BC上,P、N两点分别在AB,AC上,且PN=8m,则平行四边形PQMN的面积为 m2.
    相关试卷

    专题19 三角形内接矩形相似模型(教师版)-中考数学几何模型重点突破讲练: 这是一份专题19 三角形内接矩形相似模型(教师版)-中考数学几何模型重点突破讲练,共30页。

    专题17 旋转相似模型(教师版)-中考数学几何模型重点突破讲练: 这是一份专题17 旋转相似模型(教师版)-中考数学几何模型重点突破讲练,共33页。

    专题15 共边共角相似模型(教师版)-中考数学几何模型重点突破讲练: 这是一份专题15 共边共角相似模型(教师版)-中考数学几何模型重点突破讲练,共46页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题19 三角形内接矩形相似模型-中考数学几何模型(重点专练)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map