所属成套资源:2024届高三数学三轮复习
新情境专项训练4+关注经济发展-2024届高三数学三轮复习
展开
这是一份新情境专项训练4+关注经济发展-2024届高三数学三轮复习,共12页。试卷主要包含了8组数据等内容,欢迎下载使用。
1. (进、出口)如图所示是中国2012-2021年汽车进、出口量统计图,则下列结论错误的是( )
A. 2012-2021年中国汽车进口量和出口量都是有增有减的
B. 从2018年开始,中国汽车的出口量大于进口量
C. 2012-2021年中国汽车出口量的第60百分位数是106万辆
D. 2012-2021年中国汽车进口量的方差大于出口量的方差
2.(物流) 如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系.(a,b.为常数),若该果蔬在7℃的保鲜时间为288小时,在21℃ 的保鲜时间为32小时,且该果蔬所需物流时间为4天,则物流过程中果蔬的储藏温度(假设物流过程中恒温)最高不能超过( )
A. 14℃B. 15℃C. 13℃D. 16℃
3.(特产)廉江红橙是广东省廉江市特产、中国国家地理标志产品.设廉江地区某种植园成熟的红橙单果质量(单位:g)服从正态分布,且,.下列说法正确的是( )
A.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量小于167 g的概率为0.7
B.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量在167 g~168 g的概率为0.05
C.若从种植园成熟的红橙中随机选取600个,则质量大于163 g的个数的数学期望为480
D.若从种植园成熟的红橙中随机选取600个,则质量在163 g~168 g的个数的方差为136.5
二.多选题
4. (盲盒)某商场设有电子盲盒机,每个盲盒外观完全相同,规定每个玩家只能用一个账号登陆,且每次只能随机选择一个开启.已知玩家第一次抽盲盒,抽中奖品的概率为,从第二次抽盲盒开始,若前一次没抽中奖品,则这次抽中的概率为,若前一次抽中奖品,则这次抽中的概率为.记玩家第次抽盲盒,抽中奖品的概率为,则( )
A.B.数列为等比数列
C.D.当时,越大,越小
三.填空题
5.(经济持续增长)随着疫情解除,经济形势逐渐好转,很多公司的股票价格开始逐步上升.经调查,A公司的股价在去年年初(时)的股价是每股5元人民币,到了年末(时)涨到了每股6元人民币.经过建立模型分析发现,在第t个月的时候,A公司的股价可以用函数来表示,其中k为常数.假设A公司的股价继续按照上述的模型持续增长,则当A公司的股价涨到10元时,t的值约为______(结果精确到个位数,参考数据:,,.)
(提高垃圾价值)垃圾分类的目的是提高垃圾的资源价值和经济价值,减少垃圾处理量和处理设备的使用,降低处理成本,减少土地资源的消耗,具有社会、经济和生态等多方面的效益.为配合垃圾分类在学校的全面展开,某学校举办了一次垃圾分类知识比赛活动.高一、高二、高三年级分别有名、名、名同学获一等奖.若将上述获一等奖的名同学排成一排合影,要求同年级同学排在一起,则不同的排法共有 种
四.解答题
6.(现值、终值)“现值”与“终值”是利息计算中的两个基本概念,掌握好这两个概念,对于顺利解决有关金融中的数学问题以及理解各种不同的算法都是十分有益的.所谓“现值”是指在期末的金额,把它扣除利息后,折合成现时的值,而“终值”是指期后的本利和.它们计算的基点分别是存期的起点和终点.例如,在复利计息的情况下,设本金为,每期利率为,期数为,到期末的本利和为,则其中,称为期末的终值,称为期后终值的现值,即期后的元现在的价值为.
现有如下问题:小明想买一座公寓有如下两个方案
方案一:一次性付全款25万元;
方案二:分期付款,每年初付款3万元,第十年年初付完;
(1)已知一年期存款的年利率为,试讨论两种方案哪一种更好?
(2)若小明把房子租出去,第一年年初需交纳租金2万元,此后每年初涨租金1000元,参照第(1))问中的存款年利率,预计第十年房租到期后小明所获得全部租金的终值.(精确到百元)
参考数据:
7.(网络直播。陕西省榆林市2024届高三下学期4月大联考试题(三模)数学(理)T19.)
“直播的尽头是带货”,如今网络直播带货越来越火爆,但商品的质量才是一个主播能否持久带货的关键.某主播委托甲、乙两个工厂为其生产加工商品,为了了解商品质量情况,分别从甲、乙两个工厂各随机抽取了100件商品,根据商品质量可将其分为一、二、三等品,统计的结果如下图:
(1)根据独立性检验,判断是否有的把握认为商品为一等品与加工工厂有关?
(2)将样本数据的频率视为概率,现在甲、乙工厂为该主播进行商品展示活动,每轮活动分别从甲、乙工厂中随机挑选一件商品进行展示,求在两轮活动中恰有三个一等品的概率;
(3)综合各个方面的因素,最终该主播决定以后只委托甲工厂为其生产商品,已知商品随机装箱出售,每箱30个.商品出厂前,工厂可自愿选择是否对每箱商品进行检验.若执行检验,则每个商品的检验费用为10元,并将检验出的三等品更换为一等品或二等品;若不执行检验,则对卖出的每个三等品商品支付100元赔偿费用.将样本数据的频率视为概率,以整箱检验费用的期望记为,所有赔偿费用的期望记为,以和的大小关系作为决策依据,判断是否需要对每箱商品进行检验?请说明理由.
8.(企业自主研发)红旗淀粉厂2024年之前只生产食品淀粉,下表为年投入资金(万元)与年收益(万元)8组数据:
(1)用模拟生产食品淀粉年收益与年投入资金关系,求出回归方程;
(2)为响应国家“加快调整产业结构”的号召,该企业又自主研发出一种药用淀粉,预计其收益为投入的.2024年该企业计划投入200万元用于生产两种淀粉,求年收益的最大值.(精确到0.1万元)
附:①回归直线中斜率和截距的最小二乘估计公式分别为:,
②
③
情境专项训练4 关注促进经济发展 答案解析
一.单选题
1. (进、出口)如图所示是中国2012-2021年汽车进、出口量统计图,则下列结论错误的是( )
A. 2012-2021年中国汽车进口量和出口量都是有增有减的
B. 从2018年开始,中国汽车的出口量大于进口量
C. 2012-2021年中国汽车出口量的第60百分位数是106万辆
D. 2012-2021年中国汽车进口量的方差大于出口量的方差
【答案】D
【解析】由条形图可知2012-2021年中国汽车进口量和出口量都是有增有减的,所以选项A正确;
由条形图可知从2018年开始,中国汽车的出口量大于进口量,所以选项B正确;
2012-2021年中国汽车出口量由小到大排列为:,因此第60百分位数是,所以选项C正确;
由条形图可知2012-2021年中国汽车进口量的波动小于出口量的波动,因此2012-2021年中国汽车进口量的方差小于出口量的方差,所以选项D不正确,
故选:D
2.(物流) 如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系.(a,b.为常数),若该果蔬在7℃的保鲜时间为288小时,在21℃ 的保鲜时间为32小时,且该果蔬所需物流时间为4天,则物流过程中果蔬的储藏温度(假设物流过程中恒温)最高不能超过( )
A. 14℃B. 15℃C. 13℃D. 16℃
【答案】A
【解析】依题意,,则,即,显然,
设物流过程中果蔬的储藏温度为t℃,于是,
解得,因此,
所以物流过程中果蔬的储藏温度最高不能超过14℃.
故选:A
3.(特产)廉江红橙是广东省廉江市特产、中国国家地理标志产品.设廉江地区某种植园成熟的红橙单果质量(单位:g)服从正态分布,且,.下列说法正确的是( )
A.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量小于167 g的概率为0.7
B.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量在167 g~168 g的概率为0.05
C.若从种植园成熟的红橙中随机选取600个,则质量大于163 g的个数的数学期望为480
D.若从种植园成熟的红橙中随机选取600个,则质量在163 g~168 g的个数的方差为136.5
【答案】BCD
【解析】因为,所以,所以A错误.因为,所以,所以B正确.,若从种植园成熟的红橙中随机选取600个,则质量大于163 g的个数.所以,所以C正确.,若从种植园成熟的红橙中随机选取600个,则质量在163 g~168 g的个数,所以,所以D正确.
二.多选题
4. (盲盒)某商场设有电子盲盒机,每个盲盒外观完全相同,规定每个玩家只能用一个账号登陆,且每次只能随机选择一个开启.已知玩家第一次抽盲盒,抽中奖品的概率为,从第二次抽盲盒开始,若前一次没抽中奖品,则这次抽中的概率为,若前一次抽中奖品,则这次抽中的概率为.记玩家第次抽盲盒,抽中奖品的概率为,则( )
A.B.数列为等比数列
C.D.当时,越大,越小
【答案】ABC
【解析】记玩家第次抽盲盒并抽中奖品为事件,
依题意,,,,,
对于A选项,,A对;
对于B选项,,
所以,,所以,,
又因为,则,
所以,数列是首项为,公比为的等比数列,B对;
对于C选项,由B选项可知,,则,
当为奇数时,,
当为偶数时,,则随着的增大而减小,所以,.
综上所述,对任意的,,C对;
对于D选项,因为,则数列为摆动数列,D错.
故选:ABC.
三.填空题
5.(经济持续增长)随着疫情解除,经济形势逐渐好转,很多公司的股票价格开始逐步上升.经调查,A公司的股价在去年年初(时)的股价是每股5元人民币,到了年末(时)涨到了每股6元人民币.经过建立模型分析发现,在第t个月的时候,A公司的股价可以用函数来表示,其中k为常数.假设A公司的股价继续按照上述的模型持续增长,则当A公司的股价涨到10元时,t的值约为______(结果精确到个位数,参考数据:,,.)
【答案】42.
【解析】因为A公司的股价在时是每股5元人民币,所以,所以.
经过12个月后,得到,所以.
根据题意,要股价涨到10元,则,所以,
所以.
故答案为:42.
(提高垃圾价值)垃圾分类的目的是提高垃圾的资源价值和经济价值,减少垃圾处理量和处理设备的使用,降低处理成本,减少土地资源的消耗,具有社会、经济和生态等多方面的效益.为配合垃圾分类在学校的全面展开,某学校举办了一次垃圾分类知识比赛活动.高一、高二、高三年级分别有名、名、名同学获一等奖.若将上述获一等奖的名同学排成一排合影,要求同年级同学排在一起,则不同的排法共有 种
【答案】432
【解析】将三个年级的学生分别捆绑,形成三个“大元素”,
考虑三个“大元素”之间的顺序及各“大元素”内部之间的顺序,
由分步乘法计数原理可知,不同的排法种数为种.
故选:A.
四.解答题
6.(现值、终值)“现值”与“终值”是利息计算中的两个基本概念,掌握好这两个概念,对于顺利解决有关金融中的数学问题以及理解各种不同的算法都是十分有益的.所谓“现值”是指在期末的金额,把它扣除利息后,折合成现时的值,而“终值”是指期后的本利和.它们计算的基点分别是存期的起点和终点.例如,在复利计息的情况下,设本金为,每期利率为,期数为,到期末的本利和为,则其中,称为期末的终值,称为期后终值的现值,即期后的元现在的价值为.
现有如下问题:小明想买一座公寓有如下两个方案
方案一:一次性付全款25万元;
方案二:分期付款,每年初付款3万元,第十年年初付完;
(1)已知一年期存款的年利率为,试讨论两种方案哪一种更好?
(2)若小明把房子租出去,第一年年初需交纳租金2万元,此后每年初涨租金1000元,参照第(1))问中的存款年利率,预计第十年房租到期后小明所获得全部租金的终值.(精确到百元)
参考数据:
【解析】(1)解法1(从终值来考虑)若全款购置,则25万元10年后的价值
万元
若分期付款,每年初所付金额3万元,10年后的总价值为
(万元).
因此,付全款较好.
解法2(从现值来考虑)每年初付租金3万元的10年现值之和为
(万元)
比购置一次付款25万元多,故购置设备的方案较好.
(2)由题意,设小明第十年房租到期后小明所获得全部租金的终值为万元,
记,则
作差可得:
(万元).
7.(网络直播。陕西省榆林市2024届高三下学期4月大联考试题(三模)数学(理)T19.)
“直播的尽头是带货”,如今网络直播带货越来越火爆,但商品的质量才是一个主播能否持久带货的关键.某主播委托甲、乙两个工厂为其生产加工商品,为了了解商品质量情况,分别从甲、乙两个工厂各随机抽取了100件商品,根据商品质量可将其分为一、二、三等品,统计的结果如下图:
(1)根据独立性检验,判断是否有的把握认为商品为一等品与加工工厂有关?
(2)将样本数据的频率视为概率,现在甲、乙工厂为该主播进行商品展示活动,每轮活动分别从甲、乙工厂中随机挑选一件商品进行展示,求在两轮活动中恰有三个一等品的概率;
(3)综合各个方面的因素,最终该主播决定以后只委托甲工厂为其生产商品,已知商品随机装箱出售,每箱30个.商品出厂前,工厂可自愿选择是否对每箱商品进行检验.若执行检验,则每个商品的检验费用为10元,并将检验出的三等品更换为一等品或二等品;若不执行检验,则对卖出的每个三等品商品支付100元赔偿费用.将样本数据的频率视为概率,以整箱检验费用的期望记为,所有赔偿费用的期望记为,以和的大小关系作为决策依据,判断是否需要对每箱商品进行检验?请说明理由.
【解析】(1)由题意得列联表如下:
所以没有的把握认为商品为一等品与加工工厂有关.
(2)两轮中,甲展示的商品均为一等品的概率为,
只有一轮展示的商品为一等品的概率为;
两轮中,乙展示的商品均为一等品的概率为,
只有一轮展示的商品为一等品的概率为.
则两轮活动中恰有三个一等品的概率为:.
(3)由已知,每个零件为三等品的概率为,设每箱30个商品中的三等品个数为,则,所以.
若不进行检验,则450元.
若进行检验,则总检验费用的期望值为元.因为,所以应进行检验.
8.(企业自主研发)红旗淀粉厂2024年之前只生产食品淀粉,下表为年投入资金(万元)与年收益(万元)8组数据:
(1)用模拟生产食品淀粉年收益与年投入资金关系,求出回归方程;
(2)为响应国家“加快调整产业结构”的号召,该企业又自主研发出一种药用淀粉,预计其收益为投入的.2024年该企业计划投入200万元用于生产两种淀粉,求年收益的最大值.(精确到0.1万元)
附:①回归直线中斜率和截距的最小二乘估计公式分别为:,
②
③
【答案】(1) (2)36.5
【解析】
(1)
∴回归方程为:
(2)2024年设该企业投入食品淀粉生产x万元,预计收益(万元)
,
,得
∴其在上递增,上递减
0.100
0.050
0.010
0.005
2.706
3.841
6.635
7.879
10
20
30
40
50
60
70
80
12.8
16.5
19
20.9
21.5
21.9
23
25.4
161
29
20400
109
603
0.100
0.050
0.010
0.005
2.706
3.841
6.635
7.879
一等品
非一等品
合计
甲
70
30
100
乙
60
40
100
合计
130
70
200
10
20
30
40
50
60
70
80
12.8
16.5
19
20.9
21.5
21.9
23
25.4
161
29
20400
109
603
相关试卷
这是一份2024届新结构创新综合题精编-2024届高三数学三轮复习,文件包含2024届新结构高考创新综合题精编解析版pdf、2024届新结构高考创新综合题精编学生版pdf等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
这是一份2024年九省联考新情境高三数学压轴题精选25题学案,文件包含2024年九省联考新情境压轴题精选25题解析版11pdf、2024年九省联考新情境压轴题精选25题学生版pdf等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
这是一份高考数学二轮复习核心专题讲练:数列第4讲 素养提升之数列新情境、新考法专项冲刺 (含解析),共32页。试卷主要包含了新情境,新考法等内容,欢迎下载使用。