2024年中考押题预测卷02(南京卷)-数学(考试版)A3
展开
这是一份2024年中考押题预测卷02(南京卷)-数学(考试版)A3,共3页。
数 学
(考试时间:120分钟 试卷满分:120分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。写在本试卷上无效。
4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。写在本试卷上无效。
5.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共6个小题,每小题2分,共12分。在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确的字母代号填涂在答题卡相应位置上)
1.(2023•秦淮区一模)下列计算结果是正数的是( )
A.2+(﹣3)B.2﹣(﹣3)C.2×(﹣3)D.﹣32
2.(2023•鼓楼区一模)在过去10年里,我国国土绿化工程取得重大进展,新增森林面积超过22000000公顷.用科学记数法表示22000000是( )
A.22×106B.2.2×106C.22×107D.2.2×107
3.(2022•建邺区一模)估计10的值在( )
A.2与3之间B.3与4之间C.4与5之间D.5与6之间
4.(2023•南京一模)如图,在△ABC中,以BC为直径的半圆分别与AB,AC交于点D,E.若BC=6,∠A=60°,则DE的长为 ( )
A.12πB.πC.2πD.3π
5.(2023•鼓楼区一模)如图,O为△ABC的外心,四边形OCDE为正方形.以下结论:①O是△ABE的外心;②O是△ACD的外心;③直线DE与△ABC的外接圆相切.其中所有正确结论的序号是( )
A.①②B.①③C.②③D.①②③
6.(2023•玄武区一模)如图,点A,B在反比例函数y=kx(x>0)图象上,点A的横坐标为1,连接OA,OB,AB,若OA=OB,△OAB的面积为4,则k的值为( )
A.2B.3C.4D.5
二、填空题(本大题共10小题,每题2分,共20分.请把答案直接填写在答题卡相应位置上)
7.(2023•鼓楼区一模)计算:|﹣2|= ;(﹣2)0= .
8.(2023•南京一模)若式子1x−2在实数范围内有意义,则x的取值范围是 .
9.(2023•南京一模)计算2×(8−12)的结果是 .
10.(2022•建邺区一模)设x1,x2是方程x2﹣2x﹣1=0的两个根,则x1(1+x2)+x2= .
11.(2023•鼓楼区一模)如图,点I是△ABC的内心.若∠IAB=34°,∠IBC=36°,则∠ICA的度数是 °.
12.(2023•南京一模)若正比例函数y=kx与函数y=1x的图象没有交点,则k的值可以是 (写出一个即可).
13.(2024•玄武区校级模拟)定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
如图,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,△ABC有一边的长是BC的2倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A'C所在直线交l2于点D,则CD= .
14.(2023•玄武区一模)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,则该圆锥的母线长l为6cm,扇形的圆心角θ= °.
15.(2023•玄武区一模)如图,点O是正六边形ABCDEF的中心,以AB为边在正六边形ABCDEF的内部作正方形ABMN,连接OD,ON,则∠DON= °.
16.(2024•雨花台区模拟)如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=12,BOOD=43,则S△ABDS△CBD= .
三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(6分)(2023•鼓楼区一模)解不等式组4(x−1)>3x−22x−3≤5,并写出该不等式组的整数解.
18.(6分)(2023•秦淮区一模)计算m2−1m÷(m+2m+1m).
19.(8分)(2023•玄武区一模)小丽从A、B、C、D四个景点中,随机选择一个或两个景点游玩.
(1)随机选择一个景点,恰好是A景点的概率是 ;
(2)随机选择两个景点,求A,B景点至少有一个的概率.
20.(8分)(2023•建邺区一模)为了了解2022年某地区5万名大、中、小学生3分钟跳绳成绩情况,教育部门从这三类学生群体中各抽取了20%的学生进行检测,整理样本数据,并结合2018年抽样结果,得到下列统计图.
(1)本次检测抽取了大、中、小学生共 名,其中小学生 名;
(2)根据抽样的结果,估计2022年该地区5万名大、中、小学生中,3分钟跳绳成绩合格的中学生人数为 名;
(3)比较2018年与2022年抽样学生3分钟跳绳成绩合格率情况,写出一条正确的结论.
21.(8分)(2023•建邺区一模)如图,已知AB为半圆的直径.求作矩形MNPQ,使得点M,N在AB上,点P,Q在半圆上,且MN=2MQ.
要求:(1)用直尺和圆规作图;
(2)保留作图的痕迹,写出必要的文字说明.
22.(8分)(2024•雨花台区模拟)如图①,某款线上教学设备由底座,支撑臂AB,连杆BC,悬臂CD和安装在D处的摄像头组成.如图②是该款设备放置在水平桌面l上的示意图.已知支撑臂AB⊥l,AB=15cm,BC=30cm,测量得∠ABC=148°,∠BCD=28°,AE=9cm.求摄像头到桌面l的距离DE的长(结果精确到0.1cm).(参考数据:sin58°≈0.85,cs58°≈0.53,tan58°≈1.60,3≈1.73)
23.(8分)(2024•雨花台区模拟)在平面直角坐标系xOy中,已知抛物线y=x2﹣2(k﹣1)x+k2−52k(k为常数).
(1)若抛物线经过点(1,k2),求k的值;
(2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k的取值范围;
(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值−32,求k的值.
24.(8分)(2024•南京模拟)如图,在△ABC中,AC>AB.
(1)在线段BC上作点P,使得点P到AB的距离与点P到AC的距离相等(要求:尺规作图,不写作法,保留作图痕迹);
(2)在(1)的条件下,若PA=PC,求证:PC•BC=AC•AB.
25.(8分)(2024•秦淮区校级模拟)如图,四边形ABCD是平行四边形,AB=AC,⊙O是△ABC的外接圆.
(1)如图①,当CD与⊙O相切时,求证:四边形ABCD是菱形.
(2)如图②,当CD与⊙O相交于点E时.
(Ⅰ)若AD=6,CE=5,求⊙O的半径.
(Ⅱ)连接BE,交AC于点F,若EF•AB=CE2,则∠D的度数是 °.
26.(10分)(2024•秦淮区校级模拟)小郑和小外同时从A出发进行100m的游泳比赛,小郑游泳速度不变.图中的实线表示部分小外在游泳过程中与A的距离y(m)和游泳的时间t(s)之间的关系,虚线表示小郑在游泳过程中与A的距离y(m)和游泳的时间t(s)之间的关系.
(1)小郑游泳的平均速度为 m/s,游泳池的长度为 m.
(2)小外在45s后速度增加,并以增加后的速度匀速行驶,若小外和小郑同时到达终点,
①请补全小外的函数图象;
②小郑出发多长时间后,两人相距5m?(直接写出结果)
27.(10分)(2024•南京模拟)问题情境】
在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB=∠DEB=90°,∠B=30°,BE=AC=6.
【问题探究】
小昕同学将三角板DEB绕点B按顺时针方向旋转.
(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.
(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.
(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上(如图3),求点G所经过的路径长.
(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是 .
相关试卷
这是一份2024年中考押题预测卷01(南京卷)-数学(考试版)A3,共3页。
这是一份2024年中考押题预测卷02(重庆卷)-数学(考试版)A3,共5页。
这是一份2023年中考押题预测卷02(天津卷)-数学(考试版)A3,共4页。试卷主要包含了本卷共12题,共36分,995×1011B.49,4995×1011D.4等内容,欢迎下载使用。