中考数学复习课件——-二次函数存在性问题
展开二次函数与相似三角形问题
二次函数与直角三角形问题
二次函数与等腰三角形问题
二次函数与平行四边形问题(含特殊四边形)
【例1】已知抛物线与x轴分别交于,两点,与y轴交于点C.(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点. ①如图1,设 ,当k为何值时, .②如图2,以A,F,O为顶点的三角形是否与相似?若相似,求出点F的坐标;若不相似,请说明理由.
【例1】已知抛物线与x轴分别交于,两点,与y轴交于点C.(1)求抛物线的表达式及顶点D的坐标;
【例1】已知抛物线与x轴分别交于,两点,与y轴交于点C.(2)点F是线段AD上一个动点. ①如图1,设 ,当k为何值时, .
【例1】已知抛物线与x轴分别交于,两点,与y轴交于点C.(2)②如图2,以A,F,O为顶点的三角形是否与相似?若相似,求出点F的坐标;若不相似,请说明理由.
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、相似三角形的判定与性质和直角三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
(1)将A、C的坐标代入 求出a、c即可得到解析式;(2)先求出E点坐标,然后作AE的垂直平分线,与x轴交于Q,与y轴交于Q',根据垂直平分线的性质可知Q、与A、E,Q'与A、E组成的三角形是以AE为底边的等腰三角形,设Q点坐标(0,x),Q'坐标(0,y),根据距离公式建立方程求解即可;(3)根据A、E坐标,求出AE长度,然后推出∠BAE=∠ABC=45°,设 ,由相似得到 或 ,建立方程求解即可.
【例3】如图,已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的表达式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)若抛物线上有一动点M,使△ABM的面积等于△ABC的面积,求M点坐标.(4)抛物线的对称轴上是否存在动点Q,使得△BCQ为等腰三角形?若存在,求出点Q的坐标;若不存在,说明理由.
【例3】如图,已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的表达式;
【例3】如图,已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
【例3】如图,已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(3)若抛物线上有一动点M,使△ABM的面积等于△ABC的面积,求M点坐标.
【例3】如图,已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(4)抛物线的对称轴上是否存在动点Q,使得△BCQ为等腰三角形?若存在,求出点Q的坐标;若不存在,说明理由.
【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、二次函数的性质、两点间的距离公式、三角形的面积、等腰三角形的性质以及解一元二次(或一元一次)方程,解题的关键是:(1)由点的坐标,利用待定系数法求出二次函数表达式;(2)利用两点之间线段最短,找出点P的位置;(3)利用两三角形面积相等,找出关于x的一元二次方程;(4)分BQ=BC,CQ=CB及QB=QC三种情况,找出关于m的方程.
(1)把点A、B的坐标代入函数解析式,解方程组求出a、b的值,即可得解;(2)根据抛物线解析式求出对称轴,再根据平行四边形的对角线互相平分求出点C的横坐标,然后代入函数解析式计算求出纵坐标,即可得解;(3)设AC、EF的交点为D,根据点C的坐标写出点D的坐标,然后分①O是顶角,②C是顶角,③P是顶角三种情况讨论.
(1)把A(0,﹣4)代入可求c,运用根与系数的关系及 ,可求出b;(2)因为菱形的对角线互相垂直平分,故菱形的另外一条对角线必在抛物线的对称轴上,满足条件的D点,就是抛物线的顶点;(3)由四边形BPOH是以OB为对角线的菱形,可得PH垂直平分OB,求出OB的中点坐标,代入抛物线解析式即可,再根据所求点的坐标与线段OB的长度关系,判断是否为正方形即可.
中考数学专项复习课件 《二次函数存在性问题解析》: 这是一份中考数学专项复习课件 《二次函数存在性问题解析》,共18页。PPT课件主要包含了等腰三角形存在性问题,直角三角形存在性问题,平行四边形存在性问题,菱形存在性问题,直角梯形存在性问题等内容,欢迎下载使用。
中考总复习数学 专题 8 二次函数中的存在性问题课件: 这是一份中考总复习数学 专题 8 二次函数中的存在性问题课件,共60页。PPT课件主要包含了专题解析,典型例析,·1·,强化训练,·2·,·3·,·4·,·17·,·26·,·22·等内容,欢迎下载使用。
初中数学中考复习 微专题五 二次函数中的存在性问题课件PPT: 这是一份初中数学中考复习 微专题五 二次函数中的存在性问题课件PPT,共37页。PPT课件主要包含了自主解答略等内容,欢迎下载使用。