所属成套资源:挑战2023年中考数学压轴题秘笈大揭秘(全国通用)
专题6二次函数与平行四边形存在性问题-(学生版)-拔尖2023中考数学压轴题突破(全国通用)
展开
这是一份专题6二次函数与平行四边形存在性问题-(学生版)-拔尖2023中考数学压轴题突破(全国通用),共16页。
以二次函数为载体的平行四边形存在性问题是中考的热点难点之一,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.
解决抛物线中的平行四边形存在性问题,常用的结论和方法有:线段中点坐标公式、平行四边形顶点坐标公式、画平行四边形.
平面直角坐标系中,点 的坐标是,点B的坐标是,则线段AB的中点坐标是.
平行四边形ABCD的顶点坐标分别为、、、,则,
.
已知不在同一直线上的三点A、B、C,在平面内找到一个点D,使以A、B、C、D为顶点的四边形是平行四边形,有三种情况:
【例1】.(2022•娄底)如图,抛物线y=x2﹣2x﹣6与x轴相交于点A、点B,与y轴相交于点C.
(1)请直接写出点A,B,C的坐标;
(2)点P(m,n)(0<m<6)在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.
(3)点F是抛物线上的动点,作FE∥AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.
【例2】.(2022•毕节市)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,顶点为D(2,1),抛物线的对称轴交直线BC于点E.
(1)求抛物线y=﹣x2+bx+c的表达式;
(2)把上述抛物线沿它的对称轴向下平移,平移的距离为h(h>0),在平移过程中,该抛物线与直线BC始终有交点,求h的最大值;
(3)M是(1)中抛物线上一点,N是直线BC上一点.是否存在以点D,E,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
【例3】.(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.
(1)求二次函数的表达式;
(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;
(3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.
【例4】.(2022•郴州)已知抛物线y=x2+bx+c与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C.
(1)求抛物线的表达式;
(2)如图1,将直线BC向上平移,得到过原点O的直线MN.点D是直线MN上任意一点.
①当点D在抛物线的对称轴l上时,连接CD,与x轴相交于点E,求线段OE的长;
②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,求出点F与点D的坐标;若不存在,请说明理由.
1.(2021•滨城区一模)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B(5,0)及y轴上的点C,经过B、C两点的直线为y=kx+b(k≠0).
(1)求抛物线的解析式.
(2)点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.
(3)过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.
2.(2021•九龙坡区模拟)如图1,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,设点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PN⊥BC,交BC于点N.
(1)求此抛物线的解析式;
(2)请用含m的代数式表示PN,并求出PN的最大值以及此时点P的坐标;
(3)如图2,将抛物线y=ax2+bx+4沿着射线CB的方向平移,使得新抛物线y'过原点,点D为原抛物线y与新抛物线y'的交点,若点E为原抛物线的对称轴上一动点,点F为新抛物线y'上一动点,求点F使得以A,D,E,F为顶点的四边形为平行四边形,请直接写出点F的坐标,并写出一个F点的求解过程.
3.(2021•碑林区校级模拟)如图,抛物线M:y=ax2+bx+b﹣a经过点(1,﹣3)和(﹣4,12),与两坐标轴的交点分别为A,B,C,顶点为D.
(1)求抛物线M的表达式和顶点D的坐标;
(2)若抛物线N:y=﹣(x﹣h)2+与抛物线M有一个公共点为E,则在抛物线N上是否存在一点F,使得以B、C、E、F为顶点的四边形是以BC为边的平行四边形?若存在,请求出h的值;若不存在,请说明理由.
4.(2021•本溪模拟)如图,平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A(﹣,0),B(3,0)两点,与y轴交于点C,抛物线的顶点为点E.
(1)填空:△ABC的形状是 .
(2)求抛物线的解析式;
(3)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD的面积最大时,求P点坐标;
(4)M在直线BC上,N在抛物线上,以M、N、E、D为顶点的四边形为平行四边形,直接写出符合条件的点M的坐标.
5.(2021•深圳模拟)如图,抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且经过点(2,﹣3a),对称轴是直线x=1,顶点是M.
(1)求抛物线对应的函数表达式;
(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,满足以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)设直线y=﹣x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由.
6.(2021•铜梁区校级一模)已知抛物线y=ax2+bx+3与x轴交于A、B两点(点A在点B的左侧).与y轴交于点C.其中OC=OB,tan∠CAO=3.
(1)求抛物线的解析式;
(2)P是第一象限内的抛物线上一动点,Q为线段PB的中点,求△CPQ面积的最大值时P点坐标:
(3)将抛物线沿射线CB方向平移2个单位得新抛物线y'.M为新抛物线y′的顶点.D为新抛物线y'上任意一点,N为x轴上一点.当以M、N、C、D为顶点的四边形是平行四边形时,直接写出所有符合条件的点N的坐标.并选择一个你喜欢的N点.写出求解过程.
7.(2021•盘龙区二模)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6).
(1)求抛物线的解析式及顶点M的坐标;
(2)求直线AB的函数解析式及sin∠ABO的值;连接OC.若过点O的直线交线段AC于点P,将三角形AOC的面积分成1:2的两部分,请求出点P的坐标;
(3)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
8.(2021•海州区一模)如图,抛物线y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,直线l与抛物线交于点B,交y轴于点D(0,3).
(1)求该抛物线的函数表达式;
(2)点P(m,0)为线段OB上一动点,过点P作x轴的垂线EF,分别交抛物线于直线l于点E,F,连接CE,CF,BE,求四边形CEBF面积的最大值及此时m的值;
(3)点M为y轴右侧抛物线上一动点,过点M作直线MN∥AC交直线l于点N,是否存在点M,使以A,C,M,N四点为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.
9.(2021•南昌县一模)如图,已知二次函数L1:y=mx2+2mx﹣3m+1(m≥1)和二次函数L2:y=﹣m(x﹣3)2+4m﹣1(m≥1)图象的顶点分别为M,N,与x轴分别相交于A、B两点(点A在点B的左边)和C、D两点(点C在点D的左边).
(1)函数y=mx2+2mx﹣3m+1(m≥1)的顶点坐标为 ;当二次函数L1,L2的y值同时随着x的增大而增大时,则x的取值范围是 ;
(2)当AD=MN时,判断四边形AMDN的形状(直接写出,不必证明);
(3)抛物线L1,L2均会分别经过某些定点:
①求所有定点的坐标;
②若抛物线L1位置固定不变,通过左右平移抛物线L2的位置使这些定点组成的图形为菱形,则抛物线L2应平移的距离是多少?
10.(2022•渝中区校级模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与y轴交于点C,与x轴交于A、B两点,且点A的坐标为(﹣1,0),连接BC,OB=2OC.
(1)求抛物线的表达式;
(2)如图1,点P是直线BC下方抛物线上一点,过点P作直线BC的垂线,垂足为H,过点P作PQ∥y轴交BC于点Q,求△PHQ周长的最大值及此时点P坐标;
(3)如图2,将抛物线水平向左平移4个单位得到新抛物线y';点D是新抛物线y'上的点且横坐标为﹣3,点M为新抛物线y'上一点,点E、F为直线AC上的两个动点,请直接写出使得以点D、M、E、F为顶点的四边形是平行四边形的点M的横坐标,并把求其中一个点M的横坐标的过程写出来.
11.(2022•平桂区 二模)如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与直线y=﹣x+3交于点B、C(0,n).
(1)求点C的坐标及抛物线的对称轴;
(2)求该抛物线的表达式;
(3)点P在抛物线的对称轴上,纵坐标为t.若平移BC使点B与P重合,求点C的对应点C′的坐标(用含t的代数式表示);若点Q在抛物线上,以B、C、P、Q为顶点的四边形是平行四边形,且PQ∥BC,求点P的坐标.
12.(2022•龙岗区校级模拟)在平面直角坐标系xOy中,对于二次函数y=﹣x2+2mx﹣m2+4(m是常数),当m=1时,记二次函数的图象为C1;m≠1时,记二次函数的图象为C2.如图1,图象C1与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C;如图2,图象C2与x轴交于D、E两点(点D在点E的左侧).
(1)请直接写出点A、B、C的坐标;
(2)当点O、D、E中恰有一点是其余两点组成线段的中点时,m= ;
(3)如图3,C2与C1交于点P,当以点A、C、D、P为顶点的四边形是平行四边形时,求m的值.
13.(2022•康巴什一模)如图,抛物线y=﹣x2+6x﹣5与x轴交于点A和点B,与y轴交于点C,经过B、C两点的直线为y=x﹣5.
(1)写出相应点的坐标:A ,B ,C ;
(2)点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大,并求出最大值.
(3)过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.
14.(2022•武城县模拟)如图,直线l:y=﹣x+1与x轴、y轴分别交于点B、C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A.
(1)求该抛物线的解析式;
(2)若点P在直线l下方的抛物线上,过点P作PD∥x轴交l于点D,PE∥y轴交l于点E,求PD+PE的最大值;
(3)设F为直线l上的点,点P仍在直线l下方的抛物线上,以A、B、P、F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.
15.(2022•沙坪坝区校级模拟)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣2,0)、点B(点A在点B的左侧),与y轴交于点C,且过点(2,3).
(1)求抛物线的表达式;
(2)如图1,点P为直线BC上方抛物线上(不与B、C重合)一动点,过点P作PD∥y轴,交BC于D,过点P作PE∥x轴,交直线BC于E,求PE+DB的最大值及此时点P的坐标;
(3)如图2,将原抛物线沿x轴向左平移1个单位得到新抛物线y′,点M为新抛物线y′上一点,点N为原抛物线对称轴上一点,当以点A、C、M、N为顶点的四边形为平行四边形时,求点N的坐标,并写出求其中一个N点坐标的解答过程.
16.(2022•开州区模拟)如图1,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,过点B作直线BD∥直线AC,交抛物线y于另一点D,点P为直线AC上方抛物线上一动点.
(1)求线段AB的长.
(2)过点P作PF∥y轴交AC于点Q,交直线BD于点F,过点P作PE⊥AC于点E,求2PE+3PF的最大值及此时点P的坐标.
(3)如图2,将抛物线y=向右平移3个单位得到新抛物线y′,点M为新抛物线上一点,点N为原抛物线对称轴一点,直接写出所有使得A、B、M、N为顶点的四边形是平行四边形时点N的坐标,并写出其中一个点N的坐标的求解过程.
17.(2022•凤翔县二模)如图,在平面直角坐标系中,抛物线的图象经过A(﹣1,0),C(0,﹣2)两点,将抛物线C1向右平移2个单位得到抛物线C2,平移后点A的对应点为点B.
(1)求抛物线C1与C2的函数表达式;
(2)若点M是抛物线C1上一动点,点N是抛物线C2上一动点,请问是否存在这样的点M、N,使得以A、B、M、N为顶点且以AB为边的四边形是面积为8的平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.
18.(2022•碑林区校级模拟)如图,在平面直角坐标系中,抛物线W:y=x2﹣2x与x轴正半轴交于点A.直线y=x﹣2与x轴交于点B,与y轴交于点C.
(1)求线段AB的长度;
(2)将抛物线W平移,使平移后的抛物线交y轴于点D,与直线BC的一个交点为P,若以A、B、D、P为顶点的四边形是以AB为边的平行四边形,求平移后的抛物线表达式.
19.(2020秋•文昌期末)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,交直线l于点A、C(2,﹣3).
(1)求该抛物线的解析式;
(2)在y轴上是否存在点D,使S△ABD=S△ABC?若存在,请求出所有符合条件的点D的坐标;若不存在,请说明理由;
(3)P是线段AC上的一个动点,过点P做PE∥y轴交抛物线于点E,求线段PE长度的最大值;
(4)点F是抛物线上的动点,在x轴上是否存在点G,使得以点A,C,G,F为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的点G的坐标;如果不存在,请说明理由.
20.(2022•眉山)在平面直角坐标系中,抛物线y=﹣x2﹣4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(﹣5,0).
(1)求点C的坐标;
(2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;
(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
相关试卷
这是一份专题8二次函数与矩形存在性问题(学生版)-拔尖2023中考数学压轴题突破(全国通用),共15页。试卷主要包含了矩形的判定,题型分析等内容,欢迎下载使用。
这是一份专题7二次函数与菱形存在性问题(教师版)-拔尖2023中考数学压轴题突破(全国通用),共97页。
这是一份专题7二次函数与菱形存在性问题(学生版)-拔尖2023中考数学压轴题突破(全国通用),共17页。