还剩8页未读,
继续阅读
所属成套资源:备战2024年中考数学必考考点总结+题型专训(全国通用)
成套系列资料,整套一键下载
2024年中考数学必考考点专题29 图形的变换篇(原卷版)
展开这是一份2024年中考数学必考考点专题29 图形的变换篇(原卷版),共11页。
知识回顾
平移的概念:
在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移。
平移的条件:
平移的方向叫做平移方向,平移的距离叫做平移距离。平移方向与平移距离即为平移的条件。
平移的性质:
①平移前后的两个图形全等。即有对应边相等,对应角相等。
②对应点连线平行且相等,且长度都等于平移距离。
平移作图:
具体步骤:
①确定平移方向与平移距离。
②将关键点按照平移方向与平移距离进行平移,得到平移后的点。
③将平移后的关键点按照原图形连接即得到平移后的图形。
坐标表示平移:
①向右平移个单位,坐标⇒
②向左平移个单位,坐标⇒
③向上平移个单位,坐标⇒
④向下平移个单位,坐标⇒
微专题
1.(2022•广西)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神.下列的四个图中,能由如图所示的会徽经过平移得到的是( )
A.B.C.D.
2.(2022•福建)如图,现有一把直尺和一块三角尺,其中∠ABC=90°,∠CAB=60°,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到△A′B′C′,点A′对应直尺的刻度为0,则四边形ACC′A′的面积是( )
第2题 第3题
A.96B.96C.192D.160
3.(2022•嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D,B′之间的距离为( )
A.1cmB.2cmC.(﹣1)cmD.(2﹣1)cm
4.(2022•湖州)如图,将△ABC沿BC方向平移1cm得到对应的△A'B'C'.若B'C=2cm,则BC′的长是( )
第4题 第5题
A.2cmB.3cmC.4cmD.5cm
5.(2022•怀化)如图,△ABC沿BC方向平移得到△DEF,已知BC=5,EC=2,则平移的距离是( )
A.1B.2C.3D.4
6.(2022•台州)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A'B'C',且BB'⊥BC,则阴影部分的面积为 cm2.
第6题 第7题
7.(2022•百色)如图,在△ABC中,点A(3,1),B(1,2),将△ABC向左平移2个单位,再向上平移1个单位,则点B的对应点B′的坐标为( )
A.(3,1)B.(3,3)C.(﹣1,1)D.(﹣1,3)
8.(2022•赤峰)如图,点A(2,1),将线段OA先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A的对应点A′的坐标是( )
第8题 第9题
A.(﹣3,2)B.(0,4)C.(﹣1,3)D.(3,﹣1)
9.(2022•海南)如图,点A(0,3)、B(1,0),将线段AB平移得到线段DC,若∠ABC=90°,BC=2AB,则点D的坐标是( )
A.(7,2)B.(7,5)C.(5,6)D.(6,5)
10.(2022•淄博)如图,在平面直角坐标系中,平移△ABC至△A1B1C1的位置.若顶点A(﹣3,4)的对应点是A1(2,5),则点B(﹣4,2)的对应点B1的坐标是 .
11.(2022•大连)如图,在平面直角坐标系中,点A的坐标是(1,2),将线段OA向右平移4个单位长度,得到线段BC,点A的对应点C的坐标是 .
第11题 第12题
12.(2022•辽宁)在平面直角坐标系中,线段AB的端点A(3,2),B(5,2),将线段AB平移得到线段CD,点A的对应点C的坐标是(﹣1,2),则点B的对应点D的坐标是 .
13.(2022•临沂)如图,在平面直角坐标系中,△ABC的顶点A,B的坐标分别是A(0,2),B(2,﹣1).平移△ABC得到△A'B'C',若点A的对应点A'的坐标为(﹣1,0),则点B的对应点B'的坐标是 .
14.(2022•毕节市)如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(﹣1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(﹣4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,﹣4),…;按此做法进行下去,则点A10的坐标为 .
考点二:图形的对称变换
知识回顾
轴对称与轴对称图形的概念:
①轴对称的概念:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也称轴对称;这条直线叫做对称轴。
②轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称。
轴对称的性质:
①成轴对称的两个图形全等。即有对应边相等,对应角相等。
②对称轴是任意一组对应点连线的垂直平分线。
关于坐标轴对称的点的坐标:
①关于轴对称的点的坐标:横坐标不变,纵坐标互为相反数。
即关于轴对称的点的坐标为。
②关于轴对称的点的坐标:纵坐标不变,横坐标互为相反数。
即关于轴对称的点的坐标为。
③关于原点对称的点的坐标:横纵坐标均互为相反数。
即关于原点对称的点的坐标为。
关于直线对称的点的坐标:
①关于直线对称,⇒
②关于直线对称,⇒
微专题
15.(2022•六盘水)下列汉字中,能看成轴对称图形的是( )
A.坡B.上C.草D.原
16.(2022•福建)美术老师布置同学们设计窗花,下列作品为轴对称图形的是( )
A.B.
C.D.
17.(2022•贵港)若点A(a,﹣1)与点B(2,b)关于y轴对称,则a﹣b的值是( )
A.﹣1B.﹣3C.1D.2
18.(2022•常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是( )
A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)
19.(2022•新疆)在平面直角坐标系中,点A(2,1)与点B关于x轴对称,则点B的坐标是( )
A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)
20.(2022•六盘水)如图,将一张长方形纸对折,再对折,然后沿图中虚线剪下,剪下的图形展开后可得到( )
A.三角形B.梯形C.正方形D.五边形
考点三:图形的旋转变换
知识回顾
旋转的定义:
在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点。
旋转的要素:
①旋转中心;②旋转方向;③旋转角。
旋转的性质:
①旋转前后的两个图形全等。即有对应边相等,对应角相等。
②对应点到旋转中心的连线距离相等。
③对应点与旋转中心的连线构成的夹角等于旋转角。
旋转对称图形:
若一个图形旋转一定角度(小于360°)之后与原图形重合,则这个图形叫做旋转对称图形。如正多边形或圆。
中心对称:
①定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
②性质: = 1 \* ROMAN \* MERGEFORMAT I:关于中心对称的两个图形能够完全重合;
= 2 \* ROMAN \* MERGEFORMAT II:关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分。
坐标的旋转变换:
①若点顺时针或逆时针旋转90°,则横纵坐标的绝对值互换,符号看象限。
②若点顺时针或逆时针旋转180°,即关于原点成中心对称,则横纵坐标变为原来的相反数。即
旋转作图:
基本步骤:①确定旋转方向与旋转角;②把图形的关键点按照旋转方向与旋转角进行旋转,得到关键点的对应点;③将对应点按照原图形连接。
微专题
21.(2022•德州)下列图形是中心对称图形的是( )
A.B.C.D.
22.(2022•黄石)下面四幅图是我国一些博物馆的标志,其中既是轴对称图形又是中心对称图形的是( )
A.温州博物馆B.西藏博物馆
C.广东博物馆D.湖北博物馆
23.(2022•河池)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将Rt△ABC绕点B顺时针旋转90°得到Rt△A'B'C'.在此旋转过程中Rt△ABC所扫过的面积为( )
第23题 第24题
A.25π+24B.5π+24C.25πD.5π
24.(2022•呼和浩特)如图.△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△EDC,使点B的对应点D恰好落在AB边上,AC、ED交于点F.若∠BCD=α,则∠EFC的度数是(用含α的代数式表示)( )
A.90°+αB.90°﹣αC.180°﹣αD.α
25.(2022•包头)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转得到△A'B'C,其中点A'与点A是对应点,点B'与点B是对应点.若点B'恰好落在AB边上,则点A到直线A'C的距离等于( )
第25题 第26题
A.3B.2C.3D.2
26.(2022•常德)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD.则下列结论错误的是( )
A.BE=BCB.BF∥DE,BF=DE
C.∠DFC=90°D.DG=3GF
27.(2022•天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )
第27题 第28题 第29题
A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC
28.(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为( )
A.90°B.60°C.45°D.30°
29.(2022•内蒙古)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为( )
A.B.C.1﹣D.1﹣
30.(2022•朝阳)如图,在矩形ABCD中,AD=2,DC=4,将线段DC绕点D按逆时针方向旋转,当点C的对应点E恰好落在边AB上时,图中阴影部分的面积是 .
第30题 第31题
31.(2022•西宁)如图,在△ABC中,∠C=90°,∠B=30°,AB=6,将△ABC绕点A逆时针方向旋转15°得到△AB′C′,B′C′交AB于点E,则B′E= .
32.(2022•上海)有一个正n边形旋转90°后与自身重合,则n为( )
A.6B.9C.12D.15
33.(2022•遵义)在平面直角坐标系中,点A(a,1)与点B(﹣2,b)关于原点成中心对称,则a+b的值为( )
A.﹣3B.﹣1C.1D.3
34.(2022•雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为( )
A.﹣4B.4C.12D.﹣12
35.(2022•湘西州)在平面直角坐标系中,已知点P(﹣3,5)与点Q(3,m﹣2)关于原点对称,则m= .
36.(2022•怀化)已知点A(﹣2,b)与点B(a,3)关于原点对称,则a﹣b= .
37.(2022•枣庄)如图,将△ABC先向右平移1个单位,再绕点P按顺时针方向旋转90°,得到△A′B′C′,则点B的对应点B′的坐标是( )
A.(4,0)B.(2,﹣2)C.(4,﹣1)D.(2,﹣3)
38.(2022•青岛)如图,将△ABC先向右平移3个单位,再绕原点O旋转180°,得到△A'B'C',则点A的对应点A'的坐标是( )
第38题 第39题
A.(2,0)B.(﹣2,﹣3)C.(﹣1,﹣3)D.(﹣3,﹣1)
39.(2022•聊城)如图,在直角坐标系中,线段A1B1是将△ABC绕着点P(3,2)逆时针旋转一定角度后得到的△A1B1C1的一部分,则点C的对应点C1的坐标是( )
A.(﹣2,3)B.(﹣3,2)C.(﹣2,4)D.(﹣3,3)
40.(2022•杭州)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(﹣,0),M2(﹣,﹣1),M3(1,4),M4(2,)四个点中,直线PB经过的点是( )
第40题 第41题
A.M1B.M2C.M3D.M4
41.(2022•贺州)如图,在平面直角坐标系中,△OAB为等腰三角形,OA=AB=5,点B到x轴的距离为4,若将△OAB绕点O逆时针旋转90°,得到△OA′B′,则点B′的坐标为 .
相关试卷
2024年中考数学必考考点专题25 菱形篇(原卷版):
这是一份2024年中考数学必考考点专题25 菱形篇(原卷版),共7页。
2024年中考数学必考考点专题11 图形的变换篇(解析版):
这是一份2024年中考数学必考考点专题11 图形的变换篇(解析版),共29页。
2024年中考数学必考考点专题11 图形的变换篇(原卷版):
这是一份2024年中考数学必考考点专题11 图形的变换篇(原卷版),共12页。