方法必备04新定义与阅读理解归纳迁移探究题(9个考点23年中考真题大题50题专练) -2024年中考数学考点必备
展开一.反比例函数的应用(共1小题) 二.反比例函数综合题(共2小题)
三.二次函数综合题(共7小题) 四.三角形综合题(共5小题)
五.四边形综合题(共18小题 六.圆周角定理(共1小题)
七.圆的综合题(共4小题) 八.几何变换综合题(共4小题)
九.相似形综合题(共8小题)
一.反比例函数的应用(共1小题)
1.(2023•达州)【背景】在一次物理实验中,小冉同学用一固定电压为的蓄电池,通过调节滑动变阻器来改变电流大小,完成控制灯泡(灯丝的阻值 亮度的实验(如图),已知串联电路中,电流与电阻、之间关系为,通过实验得出如下数据:
(1) , ;
(2)【探究】根据以上实验,构建出函数,结合表格信息,探究函数的图象与性质.
①在平面直角坐标系中画出对应函数的图象;
②随着自变量的不断增大,函数值的变化趋势是 .
(3)【拓展】结合(2)中函数图象分析,当时,的解集为 .
二.反比例函数综合题(共2小题)
2.(2023•济南)综合与实践
如图1,某兴趣小组计划开垦一个面积为的矩形地块种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为.
【问题提出】
小组同学提出这样一个问题:若,能否围出矩形地块?
【问题探究】
小颖尝试从“函数图象”的角度解决这个问题:
设为,为.由矩形地块面积为,得到,满足条件的可看成是反比例函数的图象在第一象限内点的坐标;木栏总长为,得到,满足条件的可看成一次函数的图象在第一象限内点的坐标,同时满足这两个条件的就可以看成两个函数图象交点的坐标.
如图2,反比例函数的图象与直线的交点坐标为和 ,因此,木栏总长为时,能围出矩形地块,分别为:,;或 , .
(1)根据小颖的分析思路,完成上面的填空;
【类比探究】
(2)若,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由;
【问题延伸】
当木栏总长为时,小颖建立了一次函数.发现直线可以看成是直线通过平移得到的,在平移过程中,当过点时,直线与反比例函数的图象有唯一交点.
(3)请在图2中画出直线过点时的图象,并求出的值;
【拓展应用】
小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“与图象在第一象限内交点的存在问题”.
(4)若要围出满足条件的矩形地块,且和的长均不小于,请直接写出的取值范围.
3.(2023•凉山州)阅读理解题:阅读材料:
如图1,四边形是矩形,是等腰直角三角形,记为、为,若,则.
证明:设,
,
,
易证.
,,
,,
,
若时,当,则.
同理:若时,当,则.
根据上述材料,完成下列问题:
如图2,直线与反比例函数的图象交于点,与轴交于点.将直线绕点顺时针旋转后的直线与轴交于点,过点作轴于点,过点作轴于点,已知.
(1)求反比例函数的解析式;
(2)直接写出、的值;
(3)求直线的解析式.
三.二次函数综合题(共7小题)
4.(2023•益阳)在平面直角坐标系中,直线与轴交于点,与抛物线交于,两点在的左边).
(1)求点的坐标;
(2)如图1,若点关于轴的对称点为点,当以点,,为顶点的三角形是直角三角形时,求实数的值;
(3)定义:将平面直角坐标系中横坐标与纵坐标均为整数的点叫作格点,如,等均为格点.如图2,直线与抛物线所围成的封闭图形即阴影部分(不包含边界)中的格点数恰好是26个,求的取值范围.
5.(2023•江西)综合与实践
问题提出
某兴趣小组开展综合实践活动:在中,,为上一点,,动点以每秒1个单位的速度从点出发,在三角形边上沿匀速运动,到达点时停止,以为边作正方形.设点的运动时间为 ,正方形的面积为,探究与的关系.
初步感知
(1)如图1,当点由点运动到点时,
①当时, ;
②关于的函数解析式为 .
(2)当点由点运动到点时,经探究发现是关于的二次函数,并绘制成如图2所示的图象.请根据图象信息,求关于的函数解析式及线段的长.
延伸探究
(3)若存在3个时刻,,对应的正方形的面积均相等.
① ;
②当时,求正方形的面积.
6.(2023•宿迁)规定:若函数的图象与函数的图象有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.
(1)下列三个函数①;②;③,其中与二次函数互为“兄弟函数”的是 (填写序号);
(2)若函数与互为“兄弟函数”, 是其中一个“兄弟点”的横坐标.
①求实数的值;
②直接写出另外两个“兄弟点”的横坐标是 、 ;
(3)若函数为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为、、,且,求的取值范围.
7.(2023•盐城)定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.
【初步理解】
(1)现有以下两个函数:①;②,其中, 为函数的轴点函数.(填序号)
【尝试应用】
(2)函数为常数,的图象与轴交于点,其轴点函数 与轴的另一交点为点.若,求的值.
【拓展延伸】
(3)如图,函数为常数,的图象与轴、轴分别交于,两点,在轴的正半轴上取一点,使得.以线段的长度为长、线段的长度为宽,在轴的上方作矩形.若函数为常数,的轴点函数的顶点在矩形的边上,求的值.
8.(2023•长沙)我们约定:若关于的二次函数与同时满足,,则称函数与函数互为“美美与共”函数.根据该约定,解答下列问题:
(1)若关于的二次函数与互为“美美与共”函数,求,,的值;
(2)对于任意非零实数,,点与点,始终在关于的函数的图象上运动,函数与互为“美美与共”函数.
①求函数的图象的对称轴;
②函数的图象是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;
(3)在同一平面直角坐标系中,若关于的二次函数与它的“美美与共”函数的图象顶点分别为点,点,函数的图象与轴交于不同两点,,函数的图象与轴交于不同两点,.当时,以,,,为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.
9.(2023•山西)综合与探究
如图,二次函数的图象与轴的正半轴交于点,经过点的直线与该函数图象交于点,与轴交于点.
(1)求直线的函数表达式及点的坐标;
(2)点是第一象限内二次函数图象上的一个动点,过点作直线轴于点,与直线交于点,设点的横坐标为.
①当时,求的值;
②当点在直线上方时,连接,过点作轴于点,与交于点,连接.设四边形的面积为,求关于的函数表达式,并求出的最大值.
10.(2023•鄂州)某数学兴趣小组运用《几何画板》软件探究型抛物线图象.发现:如图1所示,该类型图象上任意一点到定点的距离,始终等于它到定直线的距离(该结论不需要证明).他们称:定点为图象的焦点,定直线为图象的准线,叫做抛物线的准线方程.准线与轴的交点为.其中原点为的中点,.例如,抛物线,其焦点坐标为,准线方程为,其中,.
【基础训练】
(1)请分别直接写出抛物线的焦点坐标和准线的方程: , ;
【技能训练】
(2)如图2,已知抛物线上一点,到焦点的距离是它到轴距离的3倍,求点的坐标;
【能力提升】
(3)如图3,已知抛物线的焦点为,准线方程为.直线交轴于点,抛物线上动点到轴的距离为,到直线的距离为,请直接写出的最小值;
【拓展延伸】
该兴趣小组继续探究还发现:若将抛物线平移至.抛物线内有一定点,直线过点且与轴平行.当动点在该抛物线上运动时,点到直线的距离始终等于点到点的距离(该结论不需要证明).例如:抛物线上的动点到点的距离等于点到直线的距离.
请阅读上面的材料,探究下题:
(4)如图4,点是第二象限内一定点,点是抛物线上一动点.当取最小值时,请求出的面积.
四.三角形综合题(共5小题)
11.(2023•金华)问题:如何设计“倍力桥”的结构?
探究1:图3是“桥”侧面示意图,,为横梁与地面的交点,,为圆心,,,是横梁侧面两边的交点,测得,点到的距离为,试判断四边形的形状,并求的值.
探究2:若搭成的“桥”刚好能绕成环,其侧面示意图的内部形成一个多边形.
①若有12根横梁绕成环,图4是其侧面示意图,内部形成十二边形,求的值;
②若有根横梁绕成的环为偶数,且,试用关于的代数式表示内部形成的多边形的周长.
12.(2023•兰州)综合与实践:
问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9“平分一个已知角,”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在和上分别取点和,使得,连接,以为边作等边三角形,则就是的平分线.请写出平分的依据: ;
类比迁移:(2)小明根据以上信息研究发现:不一定必须是等边三角形,只需即可,他查阅资料;我国古代已经用角尺平分任意角,做法如下:如图3,在的边,上分别取,移动角尺,使角尺两边相同刻度分别与点,重合,则过角尺顶点的射线是的平分线,请说明此做法的理由;
拓展实践:(3)小明将研究应用于实践.如图4,校园的两条小路和,汇聚形成了一个岔路口,现在学校要在两条小路之间安装一盏路灯,使得路灯照亮两条小路(两条小路一样亮),并且路灯到岔路口的距离和休息椅到岔路口的距离相等,试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规在对应的示意图5中作出路灯的位置.(保留作图痕迹,不写作法)
13.(2023•扬州)【问题情境】
在综合实践活动课上,李老师让同桌两位同学用相同的两块含的三角板开展数学探究活动,两块三角板分别记作和△,,,设.
【操作探究】
如图1,先将和△的边、重合,再将△绕着点按顺时针方向旋转,旋转角为,旋转过程中保持不动,连接.
(1)当时, ;当时, ;
(2)当时,画出图形,并求两块三角板重叠部分图形的面积;
(3)如图2,取的中点,将△绕着点旋转一周,点的运动路径长为 .
14.(2023•宿迁)【问题背景】由光的反射定律知:反射角等于入射角(如图①,即.小军测量某建筑物高度的方法如下:在地面点处平放一面镜子,经调整自己位置后,在点处恰好通过镜子看到建筑物的顶端.经测得,小军的眼睛离地面的距离,,,求建筑物的高度;
【活动探究】
观察小军的操作后,小明提出了一个测量广告牌高度的做法(如图②:他让小军站在点处不动,将镜子移动至处,小军恰好通过镜子看到广告牌顶端,测出;再将镜子移动至处,恰好通过镜子看到广告牌的底端,测出.经测得,小军的眼睛离地面距离,,求这个广告牌的高度;
【应用拓展】
小军和小明讨论后,发现用此方法也可测量出斜坡上信号塔的高度.他们给出了如下测量步骤(如图③:①让小军站在斜坡的底端处不动(小军眼睛离地面距离,小明通过移动镜子(镜子平放在坡面上)位置至处,让小军恰好能看到塔顶;②测出;③测出坡长;④测出坡比为(即.通过他们给出的方案,请你算出信号塔的高度(结果保留整数).
15.(2023•成都)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.
在中,,,是边上一点,且为正整数),是边上的动点,过点作的垂线交直线于点.
【初步感知】
(1)如图1,当时,兴趣小组探究得出结论:,请写出证明过程.
【深入探究】
(2)①如图2,当,且点在线段上时,试探究线段,,之间的数量关系,请写出结论并证明;
②请通过类比、归纳、猜想,探究出线段,,之间数量关系的一般结论(直接写出结论,不必证明).
【拓展运用】
(3)如图3,连接,设的中点为,若,求点从点运动到点的过程中,点运动的路径长(用含的代数式表示).
五.四边形综合题(共18小题)
16.(2023•烟台)【问题背景】
如图1,数学实践课上,学习小组进行探究活动,老师要求大家对矩形进行如下操作:①分别以点,为圆心,以大于的长度为半径作弧,两弧相交于点,,作直线交于点,连接;②将沿翻折,点的对应点落在点处,作射线交于点.
【问题提出】
在矩形中,,,求线段的长;
【问题解决】
经过小组合作、探究、展示,其中的两个方案如下:
方案一:连接,如图2.经过推理、计算可求出线段的长;
方案二:将绕点旋转至处,如图3.经过推理、计算可求出线段的长.请你任选其中一种方案求线段的长.
17.(2023•衡阳)问题探究
(1)如图1,在正方形中,对角线、相交于点.在线段上任取一点(端点除外),连接、.
①求证:;
②将线段绕点逆时针旋转,使点落在的延长线上的点处.当点在线段上的位置发生变化时,的大小是否发生变化?请说明理由;
③探究与的数量关系,并说明理由.
迁移探究
(2)如图2,将正方形换成菱形,且,其他条件不变.试探究与的数量关系,并说明理由.
18.(2023•西宁)折叠问题是我们常见的数学问题,它是利用图形变化的轴对称性质解决的相关问题.数学活动课上,同学们以“矩形的折叠”为主题开展了数学活动.
【操作】如图1,在矩形中,点在边上,将矩形纸片沿所在的直线折叠,使点落在点处,与交于点.
【猜想】.
【验证】请将下列证明过程补充完整:
矩形纸片沿所在的直线折叠,
,
四边形是矩形,
(矩形的对边平行),
,
(等量代换),
.
【应用】
如图2,继续将矩形纸片折叠,使恰好落在直线上,点落在点处,点落在点处,折痕为.
(1)猜想与的数量关系,并说明理由;
(2)若,,求的长.
19.(2023•山西)阅读与思考
下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.
任务: 填空:材料中的依据1是指: .
依据2是指: .
(2)请用刻度尺、三角板等工具,画一个四边形及它的瓦里尼翁平行四边形、使得四边形为矩形;(要求同时画出四边形的对角线)
(3)在图1中,分别连接,得到图3,请猜想瓦里尼翁平行四边形的周长与对角线,长度的关系,并证明你的结论.
20.(2023•淄博)在数学综合与实践活动课上,小红以“矩形的旋转”为主题开展探究活动.
(1)操作判断
小红将两个完全相同的矩形纸片和拼成“”形图案,如图①.试判断:的形状为 .
(2)深入探究
小红在保持矩形不动的条件下,将矩形绕点旋转,若,.
探究一:当点恰好落在的延长线上时,设与相交于点,如图②.求的面积.
探究二:连接,取的中点,连接,如图③.求线段长度的最大值和最小值.
21.(2023•吉林)【操作发现】如图①,剪两张对边平行的纸条,随意交叉叠放在一起,使重合的部分构成一个四边形.转动其中一张纸条,发现四边形总是平行四边形.其判定的依据是 .
【探究提升】取两张短边长度相等的平行四边形纸条和,其中,,将它们按图②放置,落在边上,,与边分别交于点,.求证:是菱形.
【结论应用】保持图②中的平行四边形纸条不动,将平行四边形纸条沿或平移,且始终在边上,当时,延长,交于点,得到图③.若四边形的周长为40, 为锐角),则四边形的面积为 .
22.(2023•徐州)【阅读理解】如图1,在矩形中,若,,由勾股定理,得同理,故.
【探究发现】如图2,四边形为平行四边形,若,,则上述结论是否依然成立?请加以判断,并说明理由.
【拓展提升】如图3,已知为的一条中线,,,.
求证:.
【尝试应用】如图4,在矩形中,若,,点在边上,则的最小值为 .
23.(2023•兰州)综合与实践:
【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形中,是边上一点,于点,,,,试猜想四边形的形状,并说明理由;
【实践探究】(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形中,是边上一点,于点,于点,交于点,可以用等式表示线段,,的数量关系,请你思考并解答这个问题;
【拓展迁移】(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形中,是边上一点,于点,点在上,且,连接,,可以用等式表示线段,的数量关系,请你思考并解答这个问题.
24.(2023•朝阳)如图,在正方形中,点是对角线上一点,连接,将线段绕点逆时针旋转,使点落在射线上的点处,连接.
【问题引入】
(1)请你在图1或图2中证明(选择一种情况即可);
【探索发现】
(2)在(1)中你选择的图形上继续探索:延长交直线于点.将图形补充完整,猜想线段和线段的数量关系,并说明理由;
【拓展应用】
(3)如图3,,延长至点,使,连接.当的周长最小时,请你直接写出线段的长.
.
25.(2023•宁夏)综合与实践:
问题背景
数学小组发现国旗上五角星的五个角都是顶角为的等腰三角形,对此三角形产生了极大兴趣并展开探究.
探究发现
如图1,在中,,.
(1)操作发现:将折叠,使边落在边上,点的对应点是点,折痕交于点,连接,,则 ,设,,那么 (用含的式子表示);
(2)进一步探究发现:,这个比值被称为黄金比.在(1)的条件下试证明:;
拓展应用
当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的是黄金三角形.
如图2,在菱形中,,.求这个菱形较长对角线的长.
26.(2023•盐城)综合与实践
【问题情境】
如图1,小华将矩形纸片先沿对角线折叠,展开后再折叠,使点落在对角线上,点的对应点记为,折痕与边,分别交于点,.
【活动猜想】
(1)如图2,当点与点重合时,四边形是哪种特殊的四边形?答: .
【问题解决】
(2)如图3,当,,时,求证:点,,在同一条直线上.
【深入探究】
(3)如图4,当与满足什么关系时,始终有与对角线平行?请说明理由.
(4)在(3)的情形下,设与,分别交于点,,试探究三条线段,,之间满足的等量关系,并说明理由.
27.(2023•镇江)发现如图1,有一张三角形纸片,小宏做如下操作:
①取、的中点、,在边上作.
②连接,过点、作、,垂足分别为、.
③将四边形剪下,绕点旋转至四边形的位置,将四边形剪下,绕点旋转至四边形的位置.
④延长、交于点.
小宏发现并证明了以下几个结论是正确的:
①点、、在一条直线上;
②四边形是矩形;
③;
④四边形与的面积相等.
任务请你对结论①进行证明.
任务如图2,四边形中,,、分别是、的中点,连接.求证:.
任务如图3,有一张四边形纸片,,,,,,小丽分别取、的中点、,在边上作,连接,她仿照小宏的操作,将四边形分割、拼成了矩形.如果她拼成的矩形恰好是正方形,求的长.
28.(2023•山西)综合与实践
问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为和,其中,,将和按图2所示方式摆放,其中点与点重合(标记为点.当时,延长交于点,试判断四边形的形状,并说明理由.
数学思考:(1)请你解答老师提出的问题;
深入探究:(2)老师将图2中的绕点逆时针方向旋转,使点落在内部,并让同学们提出新的问题.
①“善思小组”提出问题:如图3,当时,过点作交的延长线于点,与交于点.试猜想线段和的数量关系,并加以证明.请你解答此问题;
②“智慧小组”提出问题:如图4,当时,过点作于点,若,,求的长.请你思考此问题,直接写出结果.
29.(2023•淮安)综合与实践
定义:将宽与长的比值为为正整数)的矩形称为阶奇妙矩形.
(1)概念理解:
当时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽与长的比值是 .
(2)操作验证:
用正方形纸片进行如下操作(如图(2)
第一步:对折正方形纸片,展开,折痕为,连接;
第二步:折叠纸片使落在上,点的对应点为点,展开,折痕为;
第三步:过点折叠纸片,使得点、分别落在边、上,展开,折痕为.
试说明:矩形是1阶奇妙矩形.
(3)方法迁移:
用正方形纸片折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.
(4)探究发现:
小明操作发现任一个阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点为正方形边上(不与端点重合)任意一点,连接,继续(2)中操作的第二步、第三步,四边形的周长与矩形的周长比值总是定值.请写出这个定值,并说明理由.
30.(2023•常州)对于平面内的一个四边形,若存在点,使得该四边形的一条对角线绕点旋转一定角度后能与另一条对角线重合,则称该四边形为“可旋四边形”,点是该四边形的一个“旋点”.例如,在矩形中,对角线、相交于点,则点是矩形的一个“旋点”.
(1)若菱形为“可旋四边形”,其面积是4,则菱形的边长是 ;
(2)如图1,四边形为“可旋四边形”,边的中点是四边形的一个“旋点”.求的度数;
(3)如图2,在四边形中,,与不平行.四边形是否为“可旋四边形”?请说明理由.
31.(2023•湘潭)问题情境:小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形的边上任意取一点,以为边长向外作正方形,将正方形绕点顺时针旋转.
特例感知:(1)当在上时,连接,相交于点,小红发现点恰为的中点,如图①.针对小红发现的结论,请给出证明;
(2)小红继续连接,并延长与相交,发现交点恰好也是中点,如图②.根据小红发现的结论,请判断的形状,并说明理由;
规律探究:
(3)如图③,将正方形绕点顺时针旋转,连接,点是中点,连接,,,的形状是否发生改变?请说明理由.
32.(2023•河南)李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.
(1)观察发现
如图1,在平面直角坐标系中,过点的直线轴,作关于轴对称的图形△,再分别作△ 关于轴和直线对称的图形△和△,则△可以看作是绕点顺时针旋转得到的,旋转角的度数为 ;△可以看作是向右平移得到的,平移距离为 个单位长度.
(2)探究迁移
如图2,中,,为直线下方一点,作点关于直线的对称点,再分别作点关于直线和直线的对称点和,连接,,请仅就图2的情形解决以下问题:
①若,请判断与的数量关系,并说明理由;
②若,求,两点间的距离.
(3)拓展应用
在(2)的条件下,若,,,连接,当与的边平行时,请直接写出的长.
33.(2023•枣庄)问题情境:如图1,在中,,,是边上的中线.如图2,将的两个顶点,分别沿,折叠后均与点重合,折痕分别交,,于点,,,.
猜想证明:(1)如图2,试判断四边形的形状,并说明理由;
问题解决:(2)如图3,将图2中左侧折叠的三角形展开后,重新沿折叠,使得顶点与点重合,折痕分别交,于点,,的对应线段交于点,求四边形的面积.
六.圆周角定理(共1小题)
34.(2023•齐齐哈尔)综合与实践:
数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.
(1)发现问题:如图1,在和中,,,,连接,,延长交于点.则与的数量关系: , ;
(2)类比探究:如图2,在和中,,,,连接,,延长,交于点.请猜想与的数量关系及的度数,并说明理由;
(3)拓展延伸:如图3,和均为等腰直角三角形,,连接,,且点,,在一条直线上,过点作,垂足为点.则,,之间的数量关系: ;
(4)实践应用:正方形中,,若平面内存在点满足,,则 .
七.圆的综合题(共4小题)
35.(2023•广东)综合探究
如图1,在矩形中,对角线,相交于点,点关于的对称点为.连接交于点,连接.
(1)求证:;
(2)以点为圆心,为半径作圆.
①如图2,与相切,求证:;
②如图3,与相切,,求的面积.
36.(2023•泰州)已知:、为圆上两定点,点在该圆上,为所对的圆周角.
知识回顾
(1)如图①,中,、位于直线异侧,.
①求的度数;
②若的半径为5,,求的长;
逆向思考
(2)如图②,若为圆内一点,且,,.求证:为该圆的圆心;
拓展应用
(3)如图③,在(2)的条件下,若,点在位于直线上方部分的圆弧上运动.点在上,满足的所有点中,必有一个点的位置始终不变.请证明.
37.(2023•长春)【感知】如图①,点、、均在上,,则锐角的大小为 度.
【探究】小明遇到这样一个问题:如图②,是等边三角形的外接圆,点在弧上(点不与点、重合),连接、、.求证:.小明发现,延长至点,使,连接,通过证明.可推得是等边三角形,进而得证.下面是小明的部分证明过程:
证明:延长至点,使,连接.
四边形是的内接四边形,
,
,
,
是等边三角形,
,
.
请你补全余下的证明过程.
【应用】如图③,是的外接圆,,,点在上,且点与点在的两侧,连接、、,若,则的值为 .
38.(2023•青海)综合与实践
车轮设计成圆形的数学道理
小青发现路上行驶的各种车辆,车轮都是圆形的.为什么车轮要做成圆形的呢?这里面有什么数学道理吗?带着这样的疑问,小青做了如下的探究活动:
将车轮设计成不同的正多边形,在水平地面上模拟行驶.
(1)探究一:将车轮设计成等边三角形,转动过程如图1,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,,圆心角.此时中心轨迹最高点是(即的中点),转动一次前后中心的连线是(水平线),请在图2中计算到的距离.
(2)探究二:将车轮设计成正方形,转动过程如图3,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,,圆心角.此时中心轨迹最高点是(即的中点),转动一次前后中心的连线是(水平线),请在图4中计算到的距离(结果保留根号).
(3)探究三:将车轮设计成正六边形,转动过程如图5,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,圆心角 .
此时中心轨迹最高点是(即的中点),转动一次前后中心的连线是(水平线),在图6中计算到的距离 (结果保留根号).
(4)归纳推理:比较,,大小: ,按此规律推理,车轮设计成的正多边形边数越多,其中心轨迹最高点与转动一次前后中心连线(水平线)的距离 (填“越大”或“越小” .
(5)得出结论:将车轮设计成圆形,转动过程如图7,其中心(即圆心)的轨迹与水平地面平行,此时中心轨迹最高点与转动前后中心连线(水平线)的距离 这样车辆行驶平稳、没有颠簸感.所以,将车轮设计成圆形.
八.几何变换综合题(共4小题)
39.(2023•巴中)综合与实践.
(1)提出问题.如图1,在和中,,且,,连接,连接交的延长线于点.
①的度数是 .
② .
(2)类比探究.如图2,在和中,,且,,连接、并延长交于点.
①的度数是 ;
② .
(3)问题解决.如图3,在等边中,于点,点在线段上(不与重合),以为边在的左侧构造等边,将绕着点在平面内顺时针旋转任意角度.如图4,为的中点,为的中点.
①说明为等腰三角形.
②求的度数.
40.(2023•湖北)【问题呈现】
和都是直角三角形,,,,连接,,探究,的位置关系.
【问题探究】
(1)如图1,当时,直接写出,的位置关系: .
(2)如图2,当时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.
【拓展应用】
(3)当,,时,将绕点旋转,使,,三点恰好在同一直线上,求的长.
41.(2023•贵州)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形中,,,过点作射线,垂足为,点在上.
(1)【动手操作】
如图②,若点在线段上,画出射线,并将射线绕点逆时针旋转与交于点,根据题意在图中画出图形,图中的度数为 度;
(2)【问题探究】
根据(1)所画图形,探究线段与的数量关系,并说明理由;
(3)【拓展延伸】
如图③,若点在射线上移动,将射线绕点逆时针旋转与交于点,探究线段,,之间的数量关系,并说明理由.
42.(2023•大连)综合与实践
问题情境
数学活动课上,老师发给每名同学一个等腰三角形纸片,,,要求同学们将纸片沿一条直线折叠,探究图形中的结论.
问题发现
奋进小组在边上取一点,连接,将这个纸片沿翻折,点的对应点为,如图1所示.
如图2,小明发现,当点落在边上时,.
如图3,小红发现,当点是的中点时,连接,若已知和的长,则可求的长.
问题提出与解决
奋进小组根据小明和小红的发现,讨论后提出问题1,请你解答.
问题1:在中,,,点是边上一点,将沿翻折得到.
(1)如图2,当点在边上时,求证:.
(2)如图3,当点是的中点时,连接,若,,求的长.
拓展延伸
小刚受到探究过程的启发,将等腰三角形的顶角改为锐角,尝试画图,并提出问题2,请你解答.
问题2:如图4,点是外一点,,,,求的长.
九.相似形综合题(共8小题)
43.(2023•菏泽)(1)如图1,在矩形中,点,分别在边,上,,垂足为点.求证:.
【问题解决】
(2)如图2,在正方形中,点,分别在边,上,,延长到点,使,连接.求证:.
【类比迁移】
(3)如图3,在菱形中,点,分别在边,上,,,,求的长.
44.(2023•襄阳)【问题背景】
人教版八年级下册数学教材第63页“实验与探究”问题1如下:如图,正方形的对角线相交于点,点又是正方形的一个顶点,而且这两个正方形的边长相等,无论正方形绕点怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的.想一想,这是为什么?(此问题不需要作答)
九年级数学兴趣小组对上面的问题又进行了拓展探究、内容如下:正方形的对角线相交于点,点落在线段上,为常数).
【特例证明】
(1)如图1,将的直角顶点与点重合,两直角边分别与边,相交于点,.
①填空: ;
②求证:.(提示:借鉴解决【问题背景】的思路和方法,可直接证明;也可过点分别作,的垂线构造全等三角形证明.请选择其中一种方法解答问题②.
【类比探究】
(2)如图2,将图1中的沿方向平移,判断与的数量关系(用含的式子表示),并说明理由.
【拓展运用】
(3)如图3,点在边上,,延长交边于点,若,求的值.
45.(2023•湖州)【特例感知】
(1)如图1,在正方形中,点在边的延长线上,连结,过点作,交的延长线于点.求证:.
【变式求异】
(2)如图2,在中,,点在边上,过点作,交于点,点在边的延长线上,连结,过点作,交射线于点.已知,,,求的值.
【拓展应用】
(3)如图3,在中,,点在边的延长线上,点在边上(不与点,重合),连结,以为顶点作,的边交射线于点.若,,是常数),求的值(用含,的代数式表示).
46.(2023•江西)课本再现
定理证明
(1)为了证明该定理,小明同学画出了图形(如图,并写出了“已知”和“求证”,请你完成证明过程.
已知:在中,对角线,垂足为.
求证:是菱形.
知识应用
(2)如图2,在中,对角线和相交于点,,,.
①求证:是菱形;
②延长至点,连接交于点,若,求的值.
47.(2023•武汉)问题提出 如图(1),是菱形边上一点,是等腰三角形,,,交于点,探究与的数量关系.
问题探究 (1)先将问题特殊化,如图(2),当时,直接写出的大小;
(2)再探究一般情形,如图(1),求与的数量关系.
问题拓展 将图(1)特殊化,如图(3),当时,若,求的值.
48.(2023•常州)如图1,小丽借助几何软件进行数学探究:第一步,画出矩形和矩形,点、在边上,且点、、、在直线的同侧;第二步,设,,矩形能在边上左右滑动;第三步,画出边的中点,射线与射线相交于点(点、不重合),射线与射线相交于点(点、不重合),观测、的长度.
(1)如图2,小丽取,,,,滑动矩形,当点、重合时, ;
(2)小丽滑动矩形,使得恰为边的中点.她发现对于任意的,总成立.请说明理由;
(3)经过数次操作,小丽猜想,设定、的某种数量关系后,滑动矩形,总成立.小丽的猜想是否正确?请说明理由.
49.(2023•赤峰)数学兴趣小组探究了以下几何图形.如图①,把一个含有角的三角尺放在正方形中,使角的顶点始终与正方形的顶点重合,绕点旋转三角尺时,角的两边,始终与正方形的边,所在直线分别相交于点,,连接,可得.
【探究一】如图②,把绕点逆时针旋转得到,同时得到点在直线上.求证:;
【探究二】在图②中,连接,分别交,于点,.求证:;
【探究三】把三角尺旋转到如图③所示位置,直线与三角尺角两边,分别交于点,,连接交于点,求的值.
50.(2023•福建)阅读下列材料,回答问题.
(1)补全小明求解过程中①②所缺的内容;
(2)小明求得用到的几何知识是 ;
(3)小明仅利用皮尺,通过5次测量,求得.请你同时利用皮尺和测角仪,通过测量长度、角度等几何量,并利用解直角三角形的知识求小水池的最大宽度,写出你的测量及求解过程.
要求:测量得到的长度用字母,,表示,角度用,,表示;测量次数不超过4次(测量的几何量能求出,且测量的次数最少,才能得满分).
1
3
4
6
4
3
2.4
2
图1是搭成的“倍力桥”,纵梁,夹住横梁,使得横梁不能移动,结构稳固.
图2是长为,宽为的横梁侧面示意图,三个凹槽都是半径为的半圆,圆心分别为,,,,,纵梁是底面半径为的圆柱体,用相同规格的横梁、纵梁搭“桥”,间隙忽略不计.
瓦里尼翁平行四边形
我们知道,如图1,在四边形中,点,,,分别是边,,,的中点,顺次连接,,,,得到的四边形是平行四边形.
我查阅了许多资料,得知这个平行四边形被称为瓦里尼翁平行四边形.瓦里尼翁, 是法国数学家、力学家.瓦里尼翁平行四边形与原四边形关系密切.
①当原四边形的对角线满足一定关系时,瓦里尼翁平行四边形可能是菱形、矩形或正方形.
②瓦里尼翁平行四边形的周长与原四边形对角线的长度也有一定关系.
③瓦里尼翁平行四边形的面积等于原四边形面积的一半.此结论可借助图1证明如下:
证明:如图2,连接,分别交,于点,,过点作于点,交于点.
,分别为,的中点,,.(依据
.,.
四边形是瓦里尼翁平行四边形,,即.
,即,
四边形是平行四边形,(依据.
,.同理,
思考
我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?
可以发现并证明菱形的一个判定定理;
对角线互相垂直的平行四边形是菱形.
任务:测量一个扁平状的小水池的最大宽度,该水池东西走向的最大宽度远大于南北走向的最大宽度,如图1.
工具:一把皮尺(测量长度略小于和一台测角仪,如图2.皮尺的功能是直接测量任意可到达的两点间的距离(这两点间的距离不大于皮尺的测量长度);测角仪的功能是测量角的大小,即在任一点处,对其视线可及的,两点,可测得的大小,如图3.
小明利用皮尺测量,求出了小水池的最大宽度.其测量及求解过程如下:
测量过程:
(ⅰ)在小水池外选点,如图4,测得,;
(ⅱ)分别在,上测得,;测得.
求解过程:
由测量知,,,,,
,又① ,
,.
又,② .
故小水池的最大宽度为.
方法必备03基本几何模型(6种模型专练+真题强化训练)-2024年中考数学考点必备: 这是一份方法必备03基本几何模型(6种模型专练+真题强化训练)-2024年中考数学考点必备,文件包含方法必备03基本几何模型6种模型专练+真题强化训练原卷版docx、方法必备03基本几何模型6种模型专练+真题强化训练解析版docx等2份试卷配套教学资源,其中试卷共201页, 欢迎下载使用。
新定义与阅读理解归纳迁移探究题--2024年中考数学: 这是一份新定义与阅读理解归纳迁移探究题--2024年中考数学,文件包含新定义与阅读理解归纳迁移探究题解析版pdf、新定义与阅读理解归纳迁移探究题学生版pdf等2份试卷配套教学资源,其中试卷共126页, 欢迎下载使用。
初中数学中考复习 专练04(填空题-基础)(50题)2022中考数学考点必杀500题(通用版)(原卷版): 这是一份初中数学中考复习 专练04(填空题-基础)(50题)2022中考数学考点必杀500题(通用版)(原卷版),共6页。试卷主要包含了分解因式,计算的结果是_______,2=0,则xy=_____,已知,,则__等内容,欢迎下载使用。