|试卷下载
搜索
    上传资料 赚现金
    中考强化训练湖南省怀化市中考数学模拟汇总 卷(Ⅲ)(含详解)
    立即下载
    加入资料篮
    中考强化训练湖南省怀化市中考数学模拟汇总 卷(Ⅲ)(含详解)01
    中考强化训练湖南省怀化市中考数学模拟汇总 卷(Ⅲ)(含详解)02
    中考强化训练湖南省怀化市中考数学模拟汇总 卷(Ⅲ)(含详解)03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考强化训练湖南省怀化市中考数学模拟汇总 卷(Ⅲ)(含详解)

    展开
    这是一份中考强化训练湖南省怀化市中考数学模拟汇总 卷(Ⅲ)(含详解),共22页。试卷主要包含了如图,下列条件中不能判定的是,下列各式中,不是代数式的是等内容,欢迎下载使用。

    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、抛物线的顶点为( )
    A.B.C.D.
    2、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )
    A.B.C.D.
    3、如图,点F在BC上,BC=EF,AB=AE,∠B=∠E,则下列角中,和2∠C度数相等的角是( )
    A.B.C.D.
    4、如图,下列条件中不能判定的是( )
    A.B.C.D.
    5、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
    A.2 个B.3 个C.4 个D.5 个.
    6、如图,在中,,D是BC的中点,垂足为D,交AB于点E,连接CE.若,,则BE的长为( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.3B.C.4D.
    7、在一个不透明的袋中装有6个只有颜色不同的球,其中1个红球、2个黄球和3个白球.从袋中任意摸出一个球,是白球的概率为( ).
    A.B.C.D.
    8、若和是同类项,且它们的和为0,则mn的值是( )
    A.-4B.-2C.2D.4
    9、下列各式中,不是代数式的是( )
    A.5ab2B.2x+1=7C.0D.4a﹣b
    10、有理数,在数轴上对应点如图所示,则下面式子中正确的是( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知关于x的一元二次方程.若此方程有两个相等的实数根,则实数k的值为______;若此方程有两个实数根,则实数k的取值范围为______.
    2、如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、和校验码”.
    其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:
    步骤1:计算前12位数字中偶数位数字的和,即;
    步骤2:计算前12位数字中奇数位数字的和,即;
    步骤3:计算与的和,即;
    步骤4:取大于或等于且为10的整数倍的最小数,即中;
    步骤5:计算与的差就是校验码X,即.
    如图,若条形码中被污染的两个数字的和是5,则被污染的两个数字中右边的数字是______.
    3、如图,在中,,,BE是高,且点D,F分别是边AB,BC的中点,则的周长等于______.
    4、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.
    5、如图,在中,BC的垂直平分线MN交AB于点D,若,,P是直线MN上的任意· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    一点,则的最小值是______.
    三、解答题(5小题,每小题10分,共计50分)
    1、解方程
    (1)
    (2)
    2、计算:(﹣)2021×(3)2020×(﹣1)2022.
    3、如图,,,且,,求A点的坐标.
    4、如图,直线AB、CD相交于点O,OE平分∠BOD,且.求∠AOC和∠DOE的度数.
    5、数学课上,王老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.
    (1)请用两种不同的方法求图2大正方形的面积:
    方法1: ;
    方法2: ;
    (2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系 ;
    (3)根据(2)题中的等量关系,解决如下问题:
    ①已知:a+b=5,(a﹣b)2=13,求ab的值;
    ②已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.
    -参考答案-
    一、单选题
    1、B
    【分析】
    根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
    【详解】
    解:∵y=2(x-1)2+3,
    ∴抛物线的顶点坐标为(1,3),
    故选:B.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
    2、D
    【分析】
    设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
    【详解】
    解:设半径为r,如解图,过点O作,
    ∵OB=OE,
    ∴,
    ∵四边形ABCD为矩形,
    ∴∠C=90°=∠OFB,∠OBF=∠DBC,
    ∴.
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴.
    在中,,即,
    又∵为的切线,
    ∴,
    ∴,
    解得或0(不合题意舍去).
    故选D.
    【点睛】
    本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
    3、D
    【分析】
    根据SAS证明△AEF≌△ABC,由全等三角形的性质和等腰三角形的性质即可求解.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【详解】
    解:在△AEF和△ABC中,

    ∴△AEF≌△ABC(SAS),
    ∴AF=AC,∠AFE=∠C,
    ∴∠C=∠AFC,
    ∴∠EFC=∠AFE+∠AFC=2∠C.
    故选:D.
    【点睛】
    本题主要考查了全等三角形的判定与性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.
    4、A
    【分析】
    根据平行线的判定逐个判断即可.
    【详解】
    解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
    ∴∠3=∠5,
    因为”同旁内角互补,两直线平行“,
    所以本选项不能判断AB∥CD;
    B、∵∠3=∠4,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    C、∵,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    D、∵∠1=∠5,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    故选:A.
    【点睛】
    本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
    5、C
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
    (2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
    (3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
    (4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
    (5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
    故选C.
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    6、D
    【分析】
    勾股定理求出CE长,再根据垂直平分线的性质得出BE=CE即可.
    【详解】
    解:∵,,,
    ∴,
    ∵,D是BC的中点,垂足为D,
    ∴BE=CE,
    故选:D.
    【点睛】
    本题考查了勾股定理,垂直平分线的性质,解题关键是熟练运用勾股定理求出CE长.
    7、C
    【分析】
    根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    【详解】
    解:∵袋子中共有6个小球,其中白球有3个,
    ∴摸出一个球是白球的概率是.
    故选:C.
    【点睛】
    本题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    8、B
    【分析】
    根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
    【详解】
    解:∵和是同类项,且它们的和为0,
    ∴2+m=3,n-1=-3,
    解得m=1,n=-2,
    ∴mn=-2,
    故选:B.
    【点睛】
    此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
    9、B
    【分析】
    根据代数式的定义即可判定.
    【详解】
    A. 5ab2是代数式;
    B. 2x+1=7是方程,故错误;
    C. 0是代数式;
    D. 4a﹣b是代数式;
    故选B.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    此题主要考查代数式的判断,解题的关键是熟知:代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.
    10、C
    【分析】
    先根据数轴可得,再根据有理数的加减法与乘法法则逐项判断即可得.
    【详解】
    解:由数轴得:.
    A、,此项错误;
    B、由得:,所以,此项错误;
    C、,此项正确;
    D、,此项错误;
    故选:C.
    【点睛】
    本题考查了数轴、绝对值、有理数的加减法与乘法,熟练掌握数轴的性质是解题关键.
    二、填空题
    1、 9
    【解析】
    【分析】
    根据根的判别式的意义得Δ=62-4k=0,解方程即可;根据根的判别式的意义得Δ=62-4k≥0,然后解不等式即可.
    【详解】
    解:Δ=62-4k=36-4k,
    ∵方程有两个相等的实数根,
    ∴Δ=36-4k=0,
    解得:k=9;
    ∵方程有两个实数根,
    ∴Δ=36-4k≥0,
    解得:k≤9;
    故答案为:9;k≤9.
    【点睛】
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.
    2、4
    【解析】
    【分析】
    设被污染的两个数字中左边的数字为x,则右边的数为5-x,然后根据题中所给算法可进行求解.
    【详解】
    解:设被污染的两个数字中左边的数字为x,则右边的数为5-x,由题意得:



    ∵d为10的整数倍,且,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴或110,
    ∵由图可知校验码为9,
    ∴当时,则有,解得:,则有右边的数为5-1=4;
    当时,则有,解得:,不符合题意,舍去;
    ∴被污染的两个数字中右边的数字是4;
    故答案为4.
    【点睛】
    本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
    3、20
    【解析】
    【分析】
    由题意易AF⊥BC,则有,然后根据直角三角形斜边中线定理可得,进而问题可求解.
    【详解】
    解:∵,F是边BC的中点,
    ∴AF⊥BC,
    ∵BE是高,
    ∴,
    ∵点D,F分别是边AB,BC的中点,,,
    ∴,
    ∴;
    故答案为20.
    【点睛】
    本题主要考查等腰三角形的性质及直角三角形斜边中线定理,熟练掌握等腰三角形的性质及直角三角形斜边中线定理是解题的关键.
    4、4m+12##12+4m
    【解析】
    【分析】
    根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.
    【详解】
    解:由面积的和差,得
    长方形的面积为(m+3)2-m2=(m+3+m)(m+3-m)=3(2m+3).
    由长方形的宽为3,可得长方形的长是(2m+3),
    长方形的周长是2[(2m+3)+3]=4m+12.
    故答案为:4m+12.
    【点睛】
    本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.
    5、8
    【解析】
    【分析】
    如图,连接PB.利用线段的垂直平分线的性质,可知PC=PB,推出PA+PC=PA+PB≥AB,即可解决问题.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解:如图,连接PB.
    ∵MN垂直平分线段BC,
    ∴PC=PB,
    ∴PA+PC=PA+PB,
    ∵PA+PB≥AB=BD+DA=5+3=8,
    ∴PA+PC≥8,
    ∴PA+PC的最小值为8.
    故答案为:8.
    【点睛】
    本题考查轴对称﹣最短问题,线段的垂直平分线的性质等知识,解题的关键是学会利用两点之间线段最短解决最短问题,属于中考常考题型.
    三、解答题
    1、
    (1)x1=x2=1
    (2)x1=,x2=3
    【分析】
    (1)利用配方法解方程;
    (2)利用因式分解法解方程.
    (1)
    解:,
    即(x-1)2=0,
    ∴x1=x2=1.
    (2)
    解:,
    因式分解得:(2x-1)(x-3)=0,
    ∴2x-1=0或x-3=0,
    ∴x1=,x2=3.
    【点睛】
    本题考查了解一元二次方程-配方法及因式分解法,熟练掌握各自的解法是解本题的关键.
    2、
    【分析】
    直接利用积的乘方的逆运算法则:以及有理数的混合运算法则计算得出答案.
    【详解】
    解:原式=


    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    题考察了积的乘方运算,解题的关键是正确掌握相关运算法则.特别是要知道-1的偶次方是1.
    3、A点的坐标为(,)
    【分析】
    根据题意作AM⊥x轴于M,BN⊥AM于N.只要证明△ABN≌△CAM(AAS),即可推出AM=BN,AN=CM,设OM=a,则CM=5-a,BN=AM=3+a,根据MN=AM-AN,列出方程即可解决问题.
    【详解】
    解:作AM⊥x轴于M,BN⊥AM于N,
    ∵∠BAC=90°,
    ∴∠MAB+∠CAN=90°,
    ∵∠MAB+∠ABN=90°,
    ∴∠ABN=∠CAM,
    在△ABN和△CAM中,

    ∴△ABN≌△CAM(AAS),
    ∴AM=BN,AN=CM,
    ∵,,
    设OM=a,则CM=5-a,BN=AM=3+a,
    ∴MN=AM-AN,
    5=3+a-(5-a),
    ∴a=,
    ∴OM=,AM=,
    ∴A点的坐标为(,).
    【点睛】
    本题考查全等三角形的判定和性质以及平面直角坐标系点的特征,正确作出辅助线构建全等三角形是解题的关键.
    4、50°,25°.
    【分析】
    根据邻补角的性质,可得∠AOD+∠BOD=180°,即,代入可得∠BOD,根据对顶角的性质,可得∠∠AOC的度数,根据角平分线的性质,可得∠DOE的数.
    【详解】
    解:由邻补角的性质,得∠AOD+∠BOD=180°,即
    ∵,
    ∴.
    ∴,
    ∴∠AOC=∠BOD=50°,
    ∵OE平分∠BOD,得
    ∠DOE=∠DOB=25°.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查了角平分线的定义,对顶角、邻补角的性质,解题关键是熟记相关性质,根据角之间的关系建立方程求解.
    5、
    (1);
    (2)
    (3)①;②-2
    【分析】
    (1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;
    (2)由(1)直接可得关系式;
    (3)①由(a-b)2=a2+b2-2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021-a=x,a-2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=-2,再求(2021-a)(a-2020)=-2即可.
    (1)
    方法一:∵大正方形的边长为(a+b),
    ∴S=(a+b)2;
    方法二:大正方形是由2个长方形,2个小正方形拼成,
    ∴S=b2+ab+ab+a2=a2+b2+2ab;
    故答案为:(a+b)2,a2+b2+2ab;
    (2)
    由(1)可得(a+b)2=a2+b2+2ab;
    故答案为:(a+b)2=a2+b2+2ab;
    (3)
    ①∵(a-b)2=a2+b2-2ab=13①,
    (a+b)2=a2+b2+2ab=25②,
    由①-②得,-4ab=-12,
    解得:ab=3;
    ②设2021-a=x,a-2020=y,
    ∴x+y=1,
    ∵(2021-a)2+(a-2020)2=5,
    ∴x2+y2=5,
    ∵(x+y)2=x2+2xy+y2=1,
    ∴2xy=1-(x2+y2)=1-5=-4,
    解得:xy=-2,
    ∴(2021-a)(a-2020)=-2.
    【点睛】
    本题考查完全平方公式的几何背景,熟练掌握正方形、长方形面积的求法,灵活应用完全平方公式的变形是解题的关键.
    相关试卷

    中考强化训练贵州省中考数学模拟汇总 卷(Ⅲ)(含详解): 这是一份中考强化训练贵州省中考数学模拟汇总 卷(Ⅲ)(含详解),共21页。试卷主要包含了生活中常见的探照灯,下列各式中,不是代数式的是,如图,有三块菜地△ACD等内容,欢迎下载使用。

    中考强化训练湖南省武冈市中考数学模拟汇总 卷(Ⅱ)(含详解): 这是一份中考强化训练湖南省武冈市中考数学模拟汇总 卷(Ⅱ)(含详解),共21页。试卷主要包含了利用如图①所示的长为a等内容,欢迎下载使用。

    中考强化训练湖南省邵阳市中考数学模拟汇总 卷(Ⅲ)(含详解): 这是一份中考强化训练湖南省邵阳市中考数学模拟汇总 卷(Ⅲ)(含详解),共25页。试卷主要包含了如图,下列条件中不能判定的是,一元二次方程的根为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map