中考强化训练河北省中考数学高频模拟汇总 卷(Ⅲ)(含答案及详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )
A.B.C.D.
2、在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( ).
A.28B.54C.65D.75
3、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
A.B.C.D.
4、已知,则的补角等于( )
A.B.C.D.
5、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A.B.C.D.
6、整式的值随x取值的变化而变化,下表是当x取不同值时对应的整式的值:
则关于x的方程的解为( )
A.B.C.D.
7、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.75°B.70°C.65°D.55°
8、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°
A.B.C.D.
9、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
A.19°B.20°C.24°D.25°
10、下列函数中,随的增大而减小的是( )
A.B.
C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,数轴上的点所表示的数为,化简的结果为____________.
2、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为_____度.
3、平面内,,C为内部一点,射线平分,射找平分,射线平分,当时,的度数是____________.
4、多项式3x2﹣2xy2+xyz3的次数是 ___.
5、定义:有一组对边相等而另一组对边不相等的凸四边形叫做“对等四边形”,如图,在中,,点A在边BP上,点D在边CP上,如果,,,四边形ABCD为“对等四边形”,那么CD的长为_____________.
三、解答题(5小题,每小题10分,共计50分)
1、补全解题过程.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
已知:如图,∠AOB=40°,∠BOC=70°,OD平分∠AOC.
求∠BOD的度数.
解:∵∠AOB=40°,∠BOC=70°,
∴∠AOC=∠AOB+∠BOC= °.
∵OD平分∠AOC,
∴∠AOD=∠ ( )(填写推理依据).
∴∠AOD= °.
∴∠BOD=∠AOD﹣∠ .
∴∠BOD= °.
2、计算:
(1);
(2).
3、如图,一次函数的图象与反比例函数的图象相交于和两点.
(1)______,_______;
(2)结合图象直接写出不等式的解集.
4、解不等式(组),并把解集在数轴上表示出来.
(1)
(2)
5、一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.
(1)随机摸取一个小球的标号是奇数,该事件的概率为_______;
(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出的小球标号相同的概率.
-参考答案-
一、单选题
1、D
【分析】
根据勾股定理可将AB的长求出,点B所经过的路程是以点A为圆心,以AB的长为半径,圆心角为90°的扇形.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:在Rt△ABC中,AB=,
∴点B所走过的路径长为=
故选D.
【点睛】
本题主要考查了求弧长,勾股定理,解题关键是将点B所走的路程转化为求弧长,使问题简化.
2、B
【分析】
一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x,让选项等于3x列方程.解方程即可
【详解】
设中间的数是x,则上面的数是x-7,下面的数是x+7,
则这三个数的和是(x-7)+x+(x+7)=3x,
∴3x=28,
解得:不是整数,
故选项A不是;
∴3x=54,
解得: ,
中间的数是18,则上面的数是11,下面的数是28,
故选项B是;
∴3x=65,
解得: 不是整数,
故选项C不是;
∴3x=75,
解得:,
中间的数是25,则上面的数是18,下面的数是32,
日历中没有32,
故选项D不是;
所以这三个数的和可能为54,
故选B.
【点睛】
本题考查了一元一次方程的应用,解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.
3、B
【分析】
如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
【详解】
解:如图:连接OB,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵是的切线,B为切点
∴∠OBA=90°
∵
∴∠COB=90°-42°=48°
∴=∠COB=24°.
故选B.
【点睛】
本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
4、C
【分析】
补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
【详解】
解:∵,
∴的补角等于,
故选:C.
【点睛】
本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
5、D
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
6、A
【分析】
根据等式的性质把变形为;再根据表格中的数据求解即可.
【详解】
解:关于x的方程变形为,
由表格中的数据可知,当时,;
故选:A.
【点睛】
本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.
7、B
【分析】
直接根据圆周角定理求解.
【详解】
解:,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
.
故选:B.
【点睛】
本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
8、C
【分析】
根据平行线的性质可得,进而根据即可求解
【详解】
解:
故选C
【点睛】
本题考查了平行线的性质,掌握平行线的性质是解题的关键.
9、B
【分析】
根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
【详解】
∵BD的垂直平分线交AB于点E,
∴
∴
∴
∵将沿AD折叠,点C恰好与点E重合,
∴,,
∵
∴
∵
∴
∴
故选:B.
【点睛】
本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
10、C
【分析】
根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
【详解】
解:A.在中,y随x的增大而增大,故选项A不符合题意;
B.在中,y随x的增大与增大,不合题意;
C.在中,当x>0时,y随x的增大而减小,符合题意;
D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:C.
【点睛】
本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
二、填空题
1、-a
【解析】
【分析】
根据数轴,得a<0,化简即可.
【详解】
∵a<0,
∴= -a,
故答案为:-a.
【点睛】
本题考查了绝对值的化简,正确掌握绝对值化简的基本步骤是解题的关键.
2、140
【解析】
【分析】
先根据图形得出∠AOB=40°,再根据和为180度的两个角互为补角即可求解.
【详解】
解:由题意,可得∠AOB=40°,
则∠AOB的补角的大小为:180°−∠AOB=140°.
故答案为:140.
【点睛】
本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键.
3、45°或15°
【解析】
【分析】
根据角平分线的定义和角的运算,分射线OD在∠AOC外部和射线OD在∠AOC内部求解即可.
【详解】
解:∵射线平分,射找平分,
∴∠MOC= ∠AOC,∠NOC= ∠BOC,
∴∠MON=∠MOC+∠NOC=∠AOC+∠BOC=∠AOB=60°,
∵射线平分,
∴∠MOD= ∠MON=30°,
若射线OD在∠AOC外部时,如图1,
则∠COD=∠MOD-∠MOC=30°-∠AOC,
即2∠COD=60°-∠AOC,
∵,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得:∠AOC=45°或15°;
若射线OD在∠AOC内部时,如图2,
则∠COD=∠MOC-∠MOD=∠AOC-30°,
∴2∠COD=∠AOC-60°,即∠AOC-2∠COD=60°,不满足,
综上,∠AOC=45°或15°,
故答案为:45°或15°.
【点睛】
本题考查角平分线的定义、角的运算,熟练掌握角平分线的定义和角的有关计算,利用分类讨论思想求解是解答的关键.
4、5
【解析】
【分析】
根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数解答.
【详解】
解:多项式3x2﹣2xy2+xyz3的次数是5.
故答案为:5.
【点睛】
本题考查的是多项式的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.
5、13或12-或12+
【解析】
【分析】
根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.
【详解】
解:如图,点D的位置如图所示:
①若CD=AB,此时点D在D1的位置,CD1=AB=13;
②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,
过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,
设BE=x,
∵,
∴AE=x,
在Rt△ABE中,AE2+BE2=AB2,
即x2+(x)2=132,
解得:x1=5,x2=-5(舍去),
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴BE=5,AE=12,
∴CE=BC-BE=6,
由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,
在Rt△AFD2中,FD2=,
∴CD2=CF-FD2=12-,
CD3=CF+FD2=12+,
综上所述,CD的长度为13、12-或12+.
故答案为:13、12-或12+.
【点睛】
本题主要考查了新定义,锐角三角函数,勾股定理等知识,解题的关键是理解并能运用“等对角四边形”这个概念.在(2)中注意分类讨论思想的应用、勾股定理的应用.
三、解答题
1、110,AOC,角平分线的定义,55,AOB,15
【分析】
利用角的和差关系先求解 再利用角平分线的定义求解 最后利用角的和差可得答案.
【详解】
解:∵∠AOB=40°,∠BOC=70°,
∴∠AOC=∠AOB+∠BOC=110°.
∵OD平分∠AOC,
∴∠AOD=∠AOC( 角平分线的定义).
∴∠AOD=55°.
∴∠BOD=∠AOD﹣∠AOB.
∴∠BOD=15°.
故答案为:110,AOC,角平分线的定义,55,AOB,15
【点睛】
本题考查的是角平分线的定义,角的和差运算,理解题中的逻辑关系,熟练的运用角平分线与角的和差进行推理是解本题的关键.
2、
(1)
(2)-3
【分析】
(1)直接利用乘法分配律计算得出答案;
(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.
(1)
原式==-12-+14=;
(2)
原式=-4-3÷(-3)=-4+1=-3.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
3、
(1),
(2)或
【分析】
(1)把A(-1,m),B(n,-1)分别代入反比例函数解析式可求出m、n;
(2)确定A点坐标为(-1,2),B点坐标为(2,-1),然后根据图象即可求得.
(1)
把A(-1,m),B(n,-1)分别代入得-m=-2,-n=-2,
解得m=2,n=2,
故答案为:2,2
(2)
∵m=2,n=2,
∴A点坐标为(-1,2),B点坐标为(2,-1),
根据图象可得,不等式的解集为或.
【点睛】
本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.
4、
(1),作图见解析
(2),作图见解析
【分析】
(1)按照解一元一次不等式的步骤解不等式即可.
(2)将一元一次不等式组看作两个一元一次不等式,得出两个解集后取公共部分即可.
(1)
原式为
去括号得
合并同类项、移向得
故不等式的解集为
数轴上解集范围如图所示
(2)
原式为
①式为
去括号得
合并同类项、移向得
化系数为1得
②式为
去分母得
合并同类项、移向得
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
化系数为1得
故方程组的解集为
数轴上解集范围如图所示
【点睛】
本题考查了解一元一次不等式组以及用数轴表示不等式解集,解一元一次不等式的步骤为去括号、去分母、移向、合并同类项、化系数为1.解一元一次不等式组的一般步骤,第一步:分别求出不等式组中各不等式的解集;第二步:将各不等式的解集在数轴上表示出来;第三步:在数轴上找出各不等式的解集的公共部分,这个公共部分就是不等式组的解集.用数轴表示不等式的解集时要“两定”:一定边界点,二定方向. 在定边界点时,若符号是“≤”或“≥”,边界点为实心点;若符号是“<”或“>”,边界点为空心圆圈.在定方向时,相对于边界点而言,“小于向左,大于向右”.
5、
(1)
(2)(两次取出的小球标号相同)
【分析】
(1)直接由概率公式求解即可;
(2)画树状图,共有9种等可能的结果,两次取出小球标号相同的结果有3种,再由概率公式求解即可.
(1)
∵在1,2,3三个数中,其中奇数有1,3共2个数,
∴随机摸取一个小球的标号是奇数,该事件的概率为
故答案为:;
(2)
画树状图如下:
由树状图可知,随机摸取一个小球后放回,再随机摸取一个小球,共有9种等可能的结果,其中两次取出的小球标号相同的结果共有3种,
∴(两次取出的小球标号相同).
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
x
-1
0
1
2
3
-8
-4
0
4
8
中考强化训练湖南省益阳市中考数学高频模拟汇总 卷(Ⅲ)(含详解): 这是一份中考强化训练湖南省益阳市中考数学高频模拟汇总 卷(Ⅲ)(含详解),共19页。试卷主要包含了下列计算中,正确的是,和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。
中考强化训练贵州省兴仁市中考数学高频模拟汇总 卷(Ⅱ)(含答案及详解): 这是一份中考强化训练贵州省兴仁市中考数学高频模拟汇总 卷(Ⅱ)(含答案及详解),共30页。
中考强化训练贵州省中考数学高频模拟汇总 卷(Ⅰ)(含详解): 这是一份中考强化训练贵州省中考数学高频模拟汇总 卷(Ⅰ)(含详解),共29页。试卷主要包含了下列图像中表示是的函数的有几个等内容,欢迎下载使用。