


中考数学真题分类汇编第一期专题32正多边形与圆试题含解析
展开
这是一份中考数学真题分类汇编第一期专题32正多边形与圆试题含解析,共6页。试卷主要包含了选择题等内容,欢迎下载使用。
1.(2018·山东威海·3分)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是( )
A.18+36πB.24+18πC.18+18πD.12+18π
【分析】作FH⊥BC于H,连接FH,如图,根据正方形的性质和切线的性质得BE=CE=CH=FH=6,则利用勾股定理可计算出AE=6,通过Rt△ABE≌△EHF得∠AEF=90°,然后利用图中阴影部分的面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF进行计算.
【解答】解:作FH⊥BC于H,连接FH,如图,
∵点E为BC的中点,点F为半圆的中点,
∴BE=CE=CH=FH=6,
AE==6,
易得Rt△ABE≌△EHF,
∴∠AEB=∠EFH,
而∠EFH+∠FEH=90°,
∴∠AEB+∠FEH=90°,
∴∠AEF=90°,
∴图中阴影部分的面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF
=12×12+•π•62﹣×12×6﹣•6×6
=18+18π.
故选:C.
【点评】本题考查了正多边形和圆:利用面积的和差计算不规则图形的面积.
2.(2018•湖北荆门•3分)下列命题错误的是( )
A.若一个多边形的内角和与外角和相等,则这个多边形是四边形
B.矩形一定有外接圆
C.对角线相等的菱形是正方形
D.一组对边平行,另一组对边相等的四边形是平行四边形
【分析】A、任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可;
B、判断一个四边形是否有外接圆,要看此四边形的对角是否互补,矩形的对角互补,一定有外接圆;
C、根据正方形的判定方法进行判断;
D、一组对边平行且相等的四边形是平行四边形.
【解答】解:A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确;
B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确;
C、对角线相等的菱形是正方形,故此选项正确;
D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误;
本题选择错误的命题,
故选:D.
【点评】本题主要考查的是多边形的内角和和外角和,四点共圆问题,正方形的判定,平行四边形的判定,掌握这些定理和性质是关键.
3. (2018·四川自贡·4分)已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是( )
A.B.C.D.
【分析】根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.
【解答】解:由题意得,lR=8π,
则R=,
故选:A.
【点评】本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.
二.填空题
(要求同上一.)
1. (2018·四川宜宾·3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S= 2 .(结果保留根号)
【考点】MM:正多边形和圆;1O:数学常识.
【分析】根据正多边形的定义可得出△ABO为等边三角形,根据等边三角形的性质结合OM的长度可求出AB的长度,再利用三角形的面积公式即可求出S的值.
【解答】解:依照题意画出图象,如图所示.
∵六边形ABCDEF为正六边形,
∴△ABO为等边三角形,
∵⊙O的半径为1,
∴OM=1,
∴BM=AM=,
∴AB=,
∴S=6S△ABO=6×××1=2.
故答案为:2.
【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.
2 (2018•甘肃白银,定西,武威•3分) 如图,分别以等边三角形的每个顶点以圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为,则勒洛三角形的周长为__________.
【答案】
【解析】【分析】勒洛三角形的周长为3段相等的弧,计算弧长即可.
【解答】勒洛三角形的周长为3段相等的弧,每段弧的长度为:
则勒洛三角形的周长为:
故答案为:
【点评】考查弧长公式,熟记弧长公式是解题的关键.
3.(2018•甘肃白银,定西,武威•3分) 已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为__________.
【答案】108
【解析】试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称。从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状。利用知识点:主府长对正,主左高平齐,府左宽相等,得该几何体底面正六边形,AB=4,正六边形被分成6个全等的等边三角形,边长AC=2
该几何体的表面积为2+6=48+12
考点:1、三视图,2、等边三角形,3、正六边形
4. (2018•株洲市•3分)如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=_______.
【答案】48°
【解析】分析:连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可.
详解:连接OA,
∵五边形ABCDE是正五边形,
∴∠AOB==72°,
∵△AMN是正三角形,
∴∠AOM==120°,
∴∠BOM=∠AOM-∠AOB=48°,
故答案为:48°.
点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.
三.解答题
(要求同上一)
1.
相关试卷
这是一份2021年中考数学真题复习汇编:专题12反比例函数(共32题)(第01期)(含解析),共46页。试卷主要包含了单选题,解答题等内容,欢迎下载使用。
这是一份专题32 函数与几何综合问题- 2023年中考数学真题分类汇编(通用版含解析),文件包含专题32函数与几何综合问题共25题解析版docx、专题32函数与几何综合问题共25题原卷版docx等2份试卷配套教学资源,其中试卷共103页, 欢迎下载使用。
这是一份专题31 几何综合压轴题- 2023年中考数学真题分类汇编(通用版含解析),文件包含专题31几何综合压轴问题共40题解析版docx、专题31几何综合压轴问题共40题原卷版docx等2份试卷配套教学资源,其中试卷共150页, 欢迎下载使用。
