终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题07 反比例函数K值与几何面积综合-备战中考数学一轮复习考点帮(全国通用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题07 反比例函数K值与几何面积综合-备战中考数学一轮复习考点帮(全国通用)(原卷版).docx
    • 解析
      专题07 反比例函数K值与几何面积综合(全国通用)(解析版).docx
    专题07 反比例函数K值与几何面积综合-备战中考数学一轮复习考点帮(全国通用)(原卷版)第1页
    专题07 反比例函数K值与几何面积综合-备战中考数学一轮复习考点帮(全国通用)(原卷版)第2页
    专题07 反比例函数K值与几何面积综合-备战中考数学一轮复习考点帮(全国通用)(原卷版)第3页
    专题07 反比例函数K值与几何面积综合(全国通用)(解析版)第1页
    专题07 反比例函数K值与几何面积综合(全国通用)(解析版)第2页
    专题07 反比例函数K值与几何面积综合(全国通用)(解析版)第3页
    还剩4页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题07 反比例函数K值与几何面积综合-备战中考数学一轮复习考点帮(全国通用)

    展开

    这是一份专题07 反比例函数K值与几何面积综合-备战中考数学一轮复习考点帮(全国通用),文件包含专题07反比例函数K值与几何面积综合-备战中考数学一轮复习考点帮全国通用原卷版docx、专题07反比例函数K值与几何面积综合全国通用解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
    (1)反比例函数上任何一点与轴线围城的直角三角形面积都相等|k|/2;

    (2)图像上任意两点与原点构成的三角形的面积等于直角梯形的面积;
    【真题演练】
    1.(2023•福建)如图,正方形四个顶点分别位于两个反比例函数y=和y=的图象的四个分支上,则实数n的值为( )
    A.﹣3B.﹣C.D.3
    【答案】A
    【解答】解:连接正方形的对角线,由正方形的性质知对角线交于原点O,过点A,B分别作x轴的垂线.垂足分别为C、D,点B在函数y=上,如图:
    ∵四边形是正方形,
    ∴AO=BO,∠AOB=∠BDO=∠ACO=90°,
    ∴∠CAO=90°﹣∠AOC=∠BOD,
    ∴△AOC≌△BOD(AAS),
    ∴S△AOC=S△OBD==,
    ∵点A在第二象限,
    ∴n=﹣3,
    故选:A.
    2.(2023•张家界)如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,点D在AB上,且AD=AB,反比例函数y=(k>0)的图象经过点D及矩形OABC的对称中心M,连接OD,OM,DM.若△ODM的面积为3,则k的值为( )
    A.2B.3C.4D.5
    【答案】C
    【解答】解:解法一:∵四边形OCBA是矩形,
    ∴AB=OC,OA=BC,设B点的坐标为(a,b),
    ∵矩形OABC的对称中心M,
    ∴延长OM恰好经过点B,M(,),
    ∵点D在AB上,且 AD=AB,
    ∴D(,b),
    ∴BD=a,
    ∴S△BDM=BD•h=×a×(b﹣)=ab,
    ∵D在反比例函数的图象上,
    ∴ab=k,
    ∵S△ODM=S△AOB﹣S△AOD﹣S△BDM=ab﹣k﹣ab=3,
    ∴ab=16,
    ∴k=ab=4,
    解法二:连接BM,因为点M是矩形的对称中心,
    ∴三角形DMO的面积=三角形DMB的面积,
    则三角形DBO的面积为6,
    ∵AD=1/4AB,
    ∴AD:DB=1:3,
    ∴三角形ADO的面积:三角形DBO的面积为1:3,
    即三角形ADO的面积为2,
    ∴K=4.
    故选:C.
    3.(2023•黑龙江)如图,△ABC是等腰三角形,AB过原点O,底边BC∥x轴,双曲线y=过A,B两点,过点C作CD∥y轴交双曲线于点D.若S△BCD=12,则k的值是( )
    A.﹣6B.﹣12C.﹣D.﹣9
    【答案】C
    【解答】解:设BC与y轴的交点为F,B(b,),则A(﹣b,﹣),b>0,由题意知,
    AO=BO,即O是线段AB的中点,过A作AE⊥BC于点E,
    ∵AC=AB,AE⊥BC,
    ∴BE=CE,AE∥y轴,
    ∴CF=3BF=3b,
    ∴C(﹣3b,),
    ∴D(﹣3b,),
    ∴CD=,BC=4b,
    ∴S△BCD=,
    ∴k=﹣.
    故选:C.
    4.(2023•宜宾)如图,在平面直角坐标系xOy中,点A、B分别在y、x轴上,BC⊥x轴,点M、N分别在线段BC、AC上,BM=CM,NC=2AN,反比例函数y=(x>0)的图象经过M、N两点,P为x轴正半轴上一点,且OP:BP=1:4,△APN的面积为3,则k的值为( )
    A.B.C.D.
    【答案】B
    【解答】解:如图,过点N作NQ⊥x轴于点Q,过C作CT⊥y轴交y轴于T,交NQ于K,
    设OA=a,OP=b,BM=c,N(m,n),
    ∵OP:BP=1:4,BM=CM,
    ∴A(0,a),B(5b,0),M(5b,c),C(5b,2c),
    ∵∠NCK=∠ACT,∠NKC=90°=∠ATC,
    ∴△NKC∽△ATC,
    ∴==,
    ∵NC=2AN,
    ∴CK=2TK,NK=AT,
    ∴,
    解得,
    ∴,
    ∴,,
    ∴,
    ∵△APN的面积为3,
    ∴S梯形OANQ﹣S△AOP﹣S△NPQ=3,
    ∴,
    ∴2ab+bc=9,
    将点M(5b,c), 代入得:

    整理得:2a=7c,
    将2a=7c代入2ab+bc=9得:7bc+bc=9,
    ∴,
    ∴,
    故选:B.
    5.(2022•日照)如图,矩形OABC与反比例函数y1=(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=( )
    A.3B.﹣3C.D.
    【答案】B
    【解答】解:∵y1、y2的图象均在第一象限,
    ∴k1>0,k2>0,
    ∵点M、N均在反比例函数y1=(k1是非零常数,x>0)的图象上,
    ∴S△OAM=S△OCN=k1,
    ∵矩形OABC的顶点B在反比例函数y2=(k2是非零常数,x>0)的图象上,
    ∴S矩形OABC=k2,
    ∴S四边形OMBN=S矩形OABC﹣S△OAM﹣S△OCN=3,
    ∴k2﹣k1=3,
    ∴k1﹣k2=﹣3,
    故选:B.
    6.(2022•郴州)如图,在函数y=(x>0)的图象上任取一点A,过点A作y轴的垂线交函数y=﹣(x<0)的图象于点B,连接OA,OB,则△AOB的面积是( )
    A.3B.5C.6D.10
    【答案】B
    【解答】解:∵点A在函数y=(x>0)的图象上,
    ∴S△AOC=×2=1,
    又∵点B在反比例函数y=﹣(x<0)的图象上,
    ∴S△BOC=×8=4,
    ∴S△AOB=S△AOC+S△BOC
    =1+4
    =5,
    故选:B.
    7.(2022•十堰)如图,正方形ABCD的顶点分别在反比例函数y=(k1>0)和y=(k2>0)的图象上.若BD∥y轴,点D的横坐标为3,则k1+k2=( )
    A.36B.18C.12D.9
    【答案】B
    【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:
    ∵四边形ABCD是正方形,
    ∴AE=BE=CE=DE,
    设AE=BE=CE=DE=m,D(3,a),
    ∵BD∥y轴,
    ∴B(3,a+2m),A(3+m,a+m),
    ∵A,B都在反比例函数y=(k1>0)的图象上,
    ∴k1=3(a+2m)=(3+m)(a+m),
    ∵m≠0,
    ∴m=3﹣a,
    ∴B(3,6﹣a),
    ∵B(3,6﹣a)在反比例函数y=(k1>0)的图象上,D(3,a)在y=(k2>0)的图象上,
    ∴k1=3(6﹣a)=18﹣3a,k2=3a,
    ∴k1+k2=18﹣3a+3a=18;
    故选:B.
    8.(2022•黑龙江)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数y=的图象上,顶点A在反比例函数y=的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是( )
    A.2B.1C.﹣1D.﹣2
    【答案】D
    【解答】解:设B(a,),
    ∵四边形OBAD是平行四边形,
    ∴AB∥DO,
    ∴A(,),
    ∴AB=a﹣,
    ∵平行四边形OBAD的面积是5,
    ∴(a﹣)=5,
    解得k=﹣2,
    故选:D.
    9.(2023•连云港)如图,矩形OABC的顶点A在反比例函数y=(x<0)的图象上,顶点B、C在第一象限,对角线AC∥x轴,交y轴于点D.若矩形OABC的面积是6,cs∠OAC=,则k= ﹣ .
    【答案】﹣.
    【解答】解:作AE⊥x轴于E,
    ∵矩形OABC的面积是6,
    ∴△AOC的面积是3,
    ∵∠AOC=90°,cs∠OAC=,
    ∴,
    ∵对角线AC∥x轴,
    ∴∠AOE=∠OAC,
    ∵∠OEA=∠AOC=90°,
    ∴△OEA∽△AOC,
    ∴,
    ∴,
    ∴S△OEA=,
    ∵S△OEA=|k|,k<0,
    ∴k=﹣.
    故答案为:﹣.
    10.(2023•枣庄)如图,在反比例函数(x>0)的图象上有P1,P2,P3,…P2024等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,…,S2023,则S1+S2+S3+…+S2023= .
    【答案】.
    【解答】解:∵P1,P2,P3,…P2024的横坐标依次为1,2,3,…,2024,
    ∴阴影矩形的一边长都为1,
    将除第一个矩形外的所有矩形向左平移至y轴,
    ∴S1+S2+S3+…+S2023=,
    把x=2024代入关系式得,y=,即OA=,
    ∴S矩形OABC=OA•OC=,
    由几何意义得,=8,
    ∴=8﹣=.
    故答案为:.
    11.(2023•朝阳)如图,点A是反比例函数y=(k≠0,x>0)的图象上一点,过点A作AB⊥x轴于点B,点P是y轴上任意一点,连接PA,PB.若△ABP的面积等于3,则k的值为 6 .
    【答案】6.
    【解答】解:设反比例函数的解析式为 y=,
    ∵△AOB的面积=△ABP的面积=3,△AOB的面积=|k|,
    ∴|k|=3,
    ∴k=±6;
    又∵反比例函数的图象的一支位于第一象限,
    ∴k>0.
    ∴k=6.
    故答案为:6.
    12.(2023•衢州)如图,点A,B在x轴上,分别以OA,AB为边,在x轴上方作正方形OACD,ABEF,反比例函数y=(k>0)的图象分别交边CD,BE于点P,Q.作PM⊥x轴于点M,QN⊥y轴于点N.若OA=2AB,Q为BE的中点,且阴影部分面积等于6,则k的值为 24 .
    【答案】见试题解答内容
    【解答】解:设OA=4a,
    ∵AO=2AB,
    ∴AB=2a,
    ∴OB=AB+OA=6a,则B(6a,0),
    由于在正方形ABEF中,AB=BE=2a,
    ∵Q为BE中点,
    ∴BQ=AB=a,
    ∴Q(6a,a),
    ∵Q在反比例函数y=(k>0))上,
    ∴k=6a×a=6a2,
    ∵四边形OACD是正方形,
    ∴C(4a,4a),
    ∵P在CD上,
    ∴P点纵坐标为4a,
    ∵P在反比例函数y=(k>0)上,
    ∴P点横坐标为:x=,
    ∴P(,4a),
    ∵作PM⊥x轴于点M,QN⊥y轴于点N,
    ∴四边形OMNH是矩形,
    ∴NH=,MH=a,
    ∴S矩形OMHN=NH×MH=×a=6,
    则k=24,
    故答案为:24.
    13.(2023•锦州)如图,在平面直角坐标系中,△AOC的边OA在y轴上,点C在第一象限内,点B为AC的中点,反比例函数y=(x>0)的图象经过B,C两点.若△AOC的面积是6,则k的值为 4 .
    【答案】4.
    【解答】解:过点C作CD⊥y轴于点D,如图:
    设点C的坐标为(a,b),点A的坐标为(0,c),
    ∴CD=a,OA=c,
    ∵△AOC的面积是6,
    ∴,
    ∴ac=12,
    ∵点C(a,b)在反比例函数(x>0)的图象上,
    ∴k=ab,
    ∵点B为AC的中点,
    ∴点,
    ∵点B在反比例函数(x>0)的图象上,
    ∴,
    即:4k=a(b+c),
    ∴4k=ab+ac,
    将ab=k,ac=12代入上式得:k=4.
    故答案为:4.
    14.(2023•黄石)如图,点A(a,) 和B(b,)在反比例函数y=(k>0)的图象上,其中a>b>0.过点A作AC⊥x轴于点C,则△AOC的面积为 ;若△AOB的面积为,则= 2 .
    【答案】,2.
    【解答】解:因为点A(a,)在反比例函数y=的图象上,
    则,又a>0,
    解得k=5.
    根据k的几何意义可知,

    过点B作x轴的垂线,垂足为D,
    则S△OBD+S梯形ACDB=S△AOC+S△AOB,
    又根据k的几何意义可知,
    S△OBD=S△AOC,
    则S梯形ACDB=S△AOB.
    又△AOB的面积为,且A(a,),B(b,),
    所以,
    即.
    解得.
    又a>b>0,
    所以.
    故答案为:,2.
    15.(2023•辽宁)如图,矩形ABCD的边AB平行于x轴,反比例函数y=(x>0)的图象经过点B,D,对角线CA的延长线经过原点O,且AC=2AO,若矩形ABCD的面积是8,则k的值为 6 .
    【答案】6.
    【解答】解:如图,延长CD交y轴于E,连接OD,
    ∵矩形ABCD的面积是8,
    ∴S△ADC=4,
    ∵AC=2AO,
    ∴S△ADO=2,
    ∵AD∥OE,
    ∴△ACD∽△OCE,
    ∴AD:OE=AC:OC=2:3,
    ∴S△ODE=3,
    由几何意义得,=3,
    ∵k>0,
    ∴k=6,
    故答案为:6.
    16.(2023•绍兴)如图,在平面直角坐标系xOy中,函数(k为大于0的常数,x>0)图象上的两点A(x1,y1),B(x2,y2),满足x2=2x1,△ABC的边AC∥x轴,边BC∥y轴,若△OAB的面积为6,则△ABC的面积是 2 .
    【答案】2.
    【解答】解:如图,延长CA交y轴于E,延长CB交x轴于点F,
    ∴CE⊥y轴,CF⊥x轴,
    ∴四边形OECF为矩形,
    ∵x2=2x1,
    ∴点A为CE的中点,
    由几何意义得,S△OAE=S△OBF,
    ∴点B为CF的中点,
    ∴S△OAB=S矩形OECF=6,
    ∴S矩形OECF=16,
    ∴S△ABC=×16=2.
    故答案为:2.
    2
    17.(2022•烟台)如图,A,B是双曲线y=(x>0)上的两点,连接OA,OB.过点A作AC⊥x轴于点C,交OB于点D.若D为AC的中点,△AOD的面积为3,点B的坐标为(m,2),则m的值为 6 .
    【答案】见试题解答内容
    【解答】解:因为D为AC的中点,△AOD的面积为3,
    所以△AOC的面积为6,
    所以k=12=2m.
    解得:m=6.
    故答案为:6.
    18.(2022•黄石)如图,反比例函数y=的图象经过矩形ABCD对角线的交点E和点A,点B、C在x轴上,△OCE的面积为6,则k= 8 .
    【答案】8.
    【解答】解:如图,过点E作EH⊥BC于H,
    设点A(a,),C(c,0),
    ∵点E是矩形ABCD的对角线的交点,
    ∴E(,),
    ∵点E在反比例函数y=的图象上,
    ∴=k,
    ∴c=3a,
    ∵△OCE的面积为6,
    ∴OC•EH=c•=×3a•=6,
    ∴k=8,
    故答案为:8.
    19.(2022•衢州)如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=(x>0)的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC=6,则k= .
    【答案】.
    【解答】解:如图,作CM⊥AB于点M,DN⊥AB于点N,
    设C(m,),
    则OM=m,CM=,
    ∵OE∥CM,AE=CE,
    ∴==1,
    ∴AO=m,
    ∵DN∥CM,CD=2BD,
    ∴===,
    ∴DN=,
    ∴D的纵坐标为,
    ∴=,
    ∴x=3m,
    即ON=3m,
    ∴MN=2m,
    ∴BN=m,
    ∴AB=5m,
    ∵S△ABC=6,
    ∴5m•=6,
    ∴k=.
    故答案为:.
    20.(2022•宜宾)如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为 9 .
    【答案】9.
    【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图,
    ∵△OMN是边长为10的等边三角形,
    ∴OM=ON=MN=10,∠MON=∠M=∠MNO=60°
    设OC=b,则BC=,OB=2b,
    ∴BM=OM﹣OB=10﹣2b,B(b,b),
    ∵∠M=60°,AB⊥OM,
    ∴AM=2BM=20﹣4b,
    ∴AN=MN﹣AM=10﹣(20﹣4b)=4b﹣10,
    ∵∠AND=60°,
    ∴DN==2b﹣5,AD=AN=2b﹣5,
    ∴OD=ON﹣DN=15﹣2b,
    ∴A(15﹣2b,2b﹣5),
    ∵A、B两点都在反比例函数y=(x>0)的图象上,
    ∴k=(15﹣2b)(2b﹣5)=b•b,
    解得b=3或5,
    当b=5时,OB=2b=10,此时B与M重合,不符题意,舍去,
    ∴b=3,
    ∴k=b•b=9,
    故答案为:9.
    21.(2022•鄂尔多斯)如图,正方形OABC的顶点A、C分别在x轴和y轴上,E、F分别是边AB、OA上的点,且∠ECF=45°,将△ECF沿着CF翻折,点E落在x轴上的点D处.已知反比例函数y1=和y2=分别经过点B、点E,若S△COD=5,则k1﹣k2= 10 .
    【答案】见试题解答内容
    【解答】解:作EH⊥y轴于点H,
    则四边形BCHE、AEHO都为矩形,
    ∵∠ECF=45°,
    ∴∠OCD+∠OCF=45°,
    ∵∠DOC+∠OCF=45°,
    ∴∠BCE=∠OCD,
    ∵BC=OC,∠B=∠COD,
    ∴△BCE≌△OCD(ASA),
    ∴S△BCE=S△COD=5,
    ∴S△CEH=5,
    S矩形BCHE=10,
    ∴根据反比例函数系数k的几何意义得:
    k1﹣k2=S矩形BCHE=10,
    故答案为:10.
    22.(2022•东营)如图,△OAB是等腰直角三角形,直角顶点与坐标原点重合,若点B在反比例函数y=(x>0)的图象上,则经过点A的函数图象表达式为 y=﹣ .
    【答案】y=﹣.
    【解答】解:如图,作AD⊥x轴于D,BC⊥x轴于C,
    ∴∠ADO=∠BCO=90°,
    ∵∠AOB=90°,
    ∴∠AOD+∠BOC=90°,
    ∴∠AOD+∠DAO=90°,
    ∴∠BOC=∠DAO,
    ∵OB=OA,
    ∴△BOC≌△OAD(AAS),
    ∵点B在反比例函数y=(x>0)的图象上,
    ∴S△OBC=,
    ∴S△OAD=,
    ∴k=﹣1,
    ∴经过点A的反比例函数解析式为y=﹣.
    故答案为:y=﹣.
    23.(2022•绍兴)如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE位置,A的对应点是C,O的对应点是E,函数y=(k≠0)的图象经过点C和DE的中点F,则k的值是 6 .
    【答案】6.
    【解答】解:过点F作FG⊥x轴于点G,FH⊥y轴于点H,过点D作DQ⊥x轴于点Q,如图所示,
    根据题意可知,AC=OE=BD,
    设AC=OE=BD=a,
    ∴四边形ACEO的面积为4a,
    ∵F为DE的中点,FG⊥x轴,DQ⊥x轴,
    ∴FG为△EDQ的中位线,
    ∴FG=DQ=2,EG=EQ=,
    ∴四边形HFGO的面积为2(a+),
    ∴k=4a=2(a+),
    解得:a=,
    ∴k=6.
    故答案为:6.
    24.(2022•内蒙古)如图,在平面直角坐标系中,Rt△OAB的直角顶点B在x轴的正半轴上,点O与原点重合,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D,连接CD.若△ACD的面积是1,则k的值是 .
    【答案】.
    【解答】解:连接OD,过C作CE∥AB,交x轴于E,
    ∵∠ABO=90°,反比例函数y=(x>0)的图象经过OA的中点C,
    ∴S△COE=S△BOD=k,S△ACD=S△OCD=1,
    ∵CE∥AB,
    ∴△OCE∽△OAB,
    ∴△OCE与△OAB得到面积比为1:4,
    ∴4S△OCE=S△OAB,
    ∴4×k=1+1+k,
    ∴k=.
    故答案为:.

    相关试卷

    专题16 反比例函数与几何图形综合题(与面积、其他有关)-备战2024年中考数学一轮复习重难题型(全国通用):

    这是一份专题16 反比例函数与几何图形综合题(与面积、其他有关)-备战2024年中考数学一轮复习重难题型(全国通用),文件包含专题16反比例函数与几何图形综合题与面积其他有关原卷版docx、专题16反比例函数与几何图形综合题与面积其他有关解析版docx等2份试卷配套教学资源,其中试卷共91页, 欢迎下载使用。

    专题64 反比例函数k的八种几何模型及解法(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用):

    这是一份专题64 反比例函数k的八种几何模型及解法(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含专题64反比例函数k的八种几何模型及解法原卷版docx、专题64反比例函数k的八种几何模型及解法解析版docx等2份试卷配套教学资源,其中试卷共80页, 欢迎下载使用。

    专题39 几何最值之阿氏圆问题【热点专题】-【中考高分导航】备战 中考数学考点总复习(全国通用):

    这是一份专题39 几何最值之阿氏圆问题【热点专题】-【中考高分导航】备战 中考数学考点总复习(全国通用),文件包含专题39几何最值之阿氏圆问题热点专题解析版docx、专题39几何最值之阿氏圆问题热点专题原卷版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map