|试卷下载
搜索
    上传资料 赚现金
    模拟测评湖南省湘潭市中考数学第二次模拟试题(含答案及详解)
    立即下载
    加入资料篮
    模拟测评湖南省湘潭市中考数学第二次模拟试题(含答案及详解)01
    模拟测评湖南省湘潭市中考数学第二次模拟试题(含答案及详解)02
    模拟测评湖南省湘潭市中考数学第二次模拟试题(含答案及详解)03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模拟测评湖南省湘潭市中考数学第二次模拟试题(含答案及详解)

    展开
    这是一份模拟测评湖南省湘潭市中考数学第二次模拟试题(含答案及详解),共28页。试卷主要包含了单项式的次数是,下列图形是全等图形的是,如图,某汽车离开某城市的距离y等内容,欢迎下载使用。

    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )
    A.B.C.D.
    2、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )
    A.10B.11C.12D.13
    3、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
    A.米B.10米C.米D.12米
    4、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )
    A.B.C.D.
    5、单项式的次数是( )
    A.1B.2C.3D.4
    6、下列图形是全等图形的是( )
    A.B.C.D.
    7、在如图所示的几何体中,从不同方向看得到的平面图形中有长方形的是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.①B.②C.①②D.①②③
    8、下列不等式中,是一元一次不等式的是( )
    A.B.C.D.
    9、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
    A.30km/hB.60km/hC.70km/hD.90km/h
    10、有理数a,b在数轴上对应的位置如图所示,则下列结论正确的是( ).
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,将边长为2的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为______.
    2、若代数式的值是3,则多项式的值是______.
    3、不等式的解集是__.
    4、如图,在中,中线相交于点,如果的面积是4,那么四边形的面积是_________
    5、比较大小:______(用“、或”填空).
    三、解答题(5小题,每小题10分,共计50分)
    1、如图1所示,已知△ABC中,∠ACB=90°,BC=2,AC=,点D在射线BC上,以点D为圆心,BD为半径画弧交AB边AB于点E,过点E作EF⊥AB交边AC于点F,射线ED交射线AC于点G.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)求证:EA=EG;
    (2)若点G在线段AC延长线上时,设BD=x,FC=y,求y关于x的函数解析式并写出定义域;
    (3)联结DF,当△DFG是等腰三角形时,请直接写出BD的长度.
    2、如图,已知△ABC.
    (1)请用尺规完成以下作图:延长线段BC,并在线段BC的延长线上截取CD=AC,连接AD;在BD下方,作∠DBE=∠ADB;
    (2)若AB=AC,利用(1)完成的图形,猜想∠ABE与∠DBE存在的数量关系,并证明你的结论;
    (3)若AB=AC=3,BC=4,利用(1)完成的图形,计算AD的长度.
    3、如图,已知中,,射线CD交AB于点D,点E是CD上一点,且,联结BE.
    (1)求证:
    (2)如果CD平分,求证:.
    4、计算:
    (1)
    (2)
    5、(数学概念)如图1,A、B为数轴上不重合的两个点,P为数轴上任意一点,我们比较线段PA和PB的长度,将较短线段的长度定义为点P到线段AB的“靠近距离”.特别地,若线段PA和PB的长度相等,则将线段PA或PB的长度定义为点P到线段AB的“靠近距离”.如图①,点A表示的数是-4,点B表示的数是2.
    (1)(概念理解)若点P表示的数是-2,则点P到线段AB的“靠近距离”为______;
    (2)(概念理解)若点P表示的数是m,点P到线段AB的“靠近距离”为3,则m的值为______(写出所有结果);
    (3)(概念应用)如图②,在数轴上,点P表示的数是-6,点A表示的数是-3,点B表示的数是2.点P以每秒2个单位长度的速度沿数轴向右运动,同时点B以每秒1个单位长度的速度沿数轴向右运动.设运动的时间为t秒,当点P到线段AB的“靠近距离”为2时,求t的值.
    -参考答案-
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    一、单选题
    1、A
    【分析】
    根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答.
    【详解】
    解:B是俯视图,C是左视图,D是主视图,
    故四个平面图形中A不是这个几何体的三视图.
    故选:A.
    【点睛】
    本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.
    2、A
    【分析】
    作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
    【详解】
    解:如图,作正多边形的外接圆,连接AO,BO,
    ∴∠AOB=2∠ADB=36°,
    ∴这个正多边形的边数为=10.
    故选:A.
    【点睛】
    此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
    3、B
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    4、D
    【分析】
    设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
    【详解】
    解:设半径为r,如解图,过点O作,
    ∵OB=OE,
    ∴,
    ∵四边形ABCD为矩形,
    ∴∠C=90°=∠OFB,∠OBF=∠DBC,
    ∴.
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴.
    在中,,即,
    又∵为的切线,
    ∴,
    ∴,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解得或0(不合题意舍去).
    故选D.
    【点睛】
    本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
    5、C
    【分析】
    单项式中所有字母的指数和是单项式的次数,根据概念直接作答即可.
    【详解】
    解:单项式的次数是3,
    故选C
    【点睛】
    本题考查的是单项式的次数的含义,掌握“单项式中所有字母的指数和是单项式的次数”是解本题的关键.
    6、D
    【详解】
    解:A、不是全等图形,故本选项不符合题意;
    B、不是全等图形,故本选项不符合题意;
    C、不是全等图形,故本选项不符合题意;
    D、全等图形,故本选项符合题意;
    故选:D
    【点睛】
    本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.
    7、C
    【分析】
    分别找出每个图形从三个方向看所得到的图形即可得到答案.
    【详解】
    ①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,符合要求;
    ②圆柱从左面和正面看都是长方形,从上边看是圆,符合要求;
    ③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,不符合要求;故选:C.
    【点睛】
    本题考查了从不同方向看几何体,掌握定义是关键.注意正方形是特殊的长方形.
    8、B
    【分析】
    根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.
    【详解】
    A、不等式中含有两个未知数,不符合题意;
    B、符合一元一次不等式的定义,故符合题意;
    C、没有未知数,不符合题意;
    D、未知数的最高次数是2,不是1,故不符合题意.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故选:B
    【点睛】
    本题考查一元一次不等式的定义,掌握其定义是解决此题关键.
    9、B
    【分析】
    直接观察图象可得出结果.
    【详解】
    解:根据函数图象可知:t=1时,y=90;
    ∵汽车是从距离某城市30km开始行驶的,
    ∴该汽车行驶的速度为90-30=60km/h,
    故选:B.
    【点睛】
    本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
    10、D
    【分析】
    先根据数轴可得,再根据有理数的减法法则、绝对值性质逐项判断即可得.
    【详解】
    解:由数轴的性质得:.
    A、,则此项错误;
    B、,则此项错误;
    C、,则此项错误;
    D、,则此项正确;
    故选:D.
    【点睛】
    本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键.
    二、填空题
    1、(-,1)
    【解析】
    【分析】
    首先过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,易证得△AOE≌△OCD(AAS),则可得CD=OE=1,OD=AE=,继而求得答案.
    【详解】
    解:过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,
    则∠ODC=∠AEO=90°,
    ∴∠OCD+∠COD=90°,
    ∵四边形OABC是正方形,
    ∴OC=OA,∠AOC=90°,
    ∴∠COD+∠AOE=90°,
    ∴∠OCD=∠AOE,
    在△AOE和△OCD中,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    ∴△AOE≌△OCD(AAS),
    ∴CD=OE=1,OD=AE=,
    ∴点C的坐标为:(-,1).
    故答案为:(-,1).
    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得△AOE≌△OCD是解此题的关键.
    2、1
    【解析】
    【分析】
    先观察,再由已知求出6a-3b=9,然后整体代入求解即可.
    【详解】
    解:∵2a-b=3,
    ∴6a-3b=9,
    ∴6a-(3b+8)=(6a-3b)-8=9-8=1,
    故答案为:1.
    【点睛】
    本题考查代数式求值、整式的加减,利用整体代入求解是解答的关键.
    3、##
    【解析】
    【分析】
    移项合并化系数为1即可.
    【详解】

    移项合并同类项,得:.
    化系数为.
    故答案为:.
    【点睛】
    本题考查一次不等式的解法,掌握一般步骤是关键,属于基础题.
    4、8
    【解析】
    【分析】
    如图所示,连接DE,先推出DE是△ABC的中位线,得到,DE∥AB,即可证明△ABO∽△DEO,△CDE∽△CBA,得到,从而推出,即可得到,再由,即可得到,由,得到,则.
    【详解】
    解:如图所示,连接DE,
    ∵AD,BE分别是BC,AC边上的中线,
    ∴D、E分别是BC、AC的中点,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴DE是△ABC的中位线,
    ∴,DE∥AB,
    ∴△ABO∽△DEO,△CDE∽△CBA,
    ∴,
    ∴,
    ∴,
    ∴,

    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    故答案为:8.
    【点睛】
    本题主要考查了相似三角形的性质与判定,三角形中位线定理,熟知相似三角形的性质与判定条件是解题的关键.
    5、
    【解析】
    【分析】
    先求两个多项式的差,再根据结果比较大小即可.
    【详解】
    解:∵,
    =,
    =
    ∴,
    故答案为:.
    【点睛】
    本题考查了整式的加减,解题关键是熟练运用整式加减法则进行计算,根据结果判断大小.
    三、解答题
    1、
    (1)见解析
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)
    (3)
    【分析】
    (1)在BA上截取BM=BC=2,在Rt△ACB中,由勾股定理,可得AB=4,进而可得∠A=30°,∠B=60°;由DE=DB,可证△DEB是等边三角形,∠BED=60°,由外角和定理得∠BED=∠A+∠G,进而得∠G=30°,所以∠A=∠G,即可证EA=EG;
    (2)由△DEB是等边三角形可得BE=DE,由BD=x,FC=y,得BE=x, DE=x,AE=AB-BE=4-x,在Rt△AEF中,由勾股定理可表示出 ,把相关量代入FC=AC-AF,整理即可得y关于x的函数解析式;当F点与C点重合时,x取得最小值1,G在线段AC延长线上,可知,D点不能与C点重合,所以x最大值小于2,故可得1≤x<2;
    (3)连接DF,根据等腰三角形的判定定理,有两条边相等的三角形是等腰三角形,分三种情况①当时,②当时③当时,分别计算即可得BD的长.
    (1)
    如图,在BA上截取BM=BC=2,
    Rt△ACB中,∠C=90°
    ∵AC=2,BC=2,
    ∴AB=
    ∴AM=AB-BM=2,
    ∴CM=BM=AM=2,
    ∴△BCM是等边三角形,
    ∴∠B=60°,
    ∴∠A=30°,
    ∵DE=DB,∴△DEB是等边三角形,
    ∴∠BED=60°,
    ∵∠BED=∠A+∠G,
    ∴∠G=30°
    ∴∠A=∠G,
    ∴EA=EG.
    (2)
    ∵△DEB是等边三角形,
    ∴BE=DE
    设BE=x,则DE=x,AE=AB-BE=4-x
    ∵∠A=30°,∠AEF=90°,
    ∴EF=,
    Rt△AEF中,

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵FC=AC-AF,
    ∴ y =
    定义域:1≤x<2
    (3)
    连接DF,
    Rt△ACB中,∠C=90°

    ∵AC=2,BC=2,BD=x,
    ∴AB=4,EA=EG=4-x,,,
    ①当时,在Rt△DCG中,
    ∴,

    解得:(舍去),;
    ②当时,
    在Rt△DCG中,∠G=30°,
    ∴DG=2DC,
    ∴CG=
    ∴,
    解之得:;
    ③当时,在Rt△DCF中,

    ∴,

    解得:;
    综上所述:BD的长为或或.
    【点睛】
    本题主要考查了勾股定理,等腰三角形的判定等有关知识,正确进行分析,熟练掌握和灵活运用相关知识是解题的关键,注意分类思想的运用.
    2、
    (1)作图见解析
    (2),证明见解析
    (3)
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)根据作一条线段等于已知线段,作一个角等于已知角的步骤,逐步作图即可;
    (2)根据等边对等角证明结合三角形的外角的性质证明:再结合已知条件可得结论;
    (3)如图,过A作于K,理由等腰三角形的性质与勾股定理分别求解 再可以勾股定理求解即可.
    (1)
    解:如图,①延长BC,在射线BC上截取 连接AD,
    ②以D为圆心,任意长为半径画弧,交于
    ③以B为圆心,DP为半径画弧,交BC于H,
    ④以H为圆心,PQ为半径画弧,与前弧交于点E,
    再作射线BE即可.
    (2)
    解:;理由如下;






    (3)
    解:如图,过A作于K,



    【点睛】
    本题考查的是作一条线段等于已知线段,作一个角等于已知角,等腰三角形的性质,勾股定理的应用,三角形的外角的性质,熟练的运用等边对等角是解本题的关键.
    3、
    (1)见解析;
    (2)见解析
    【分析】
    (1)先根据相似三角形的判定证明△ADE∽△CDB,则可证得即,再根据相似三角形的判定即可证得结论;
    (2)根据角平分线定义和相似三角形的性质证明∠DCB=∠EAB=∠EBA=45°,则△AEB为等腰直角三角形,根据勾股定理可得AB2=2BE2,再根据相似三角形的判定证明△EBD∽△ECB即可证得结论.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)
    证明:∵,∠ADE=∠CDB,
    ∴△ADE∽△CDB,
    ∴即,又∠ADC=∠EDB,
    ∴;
    (2)
    证明:∵CD平分,∠ACB=90°,
    ∴∠ACD=∠DCB=45°,
    ∵△ADE∽△CDB,,
    ∴∠DCB=∠EAD=∠EBD=45°,
    ∴AE=BE,∠AEB=90°,
    ∴△AEB为等腰直角三角形,
    ∴AB2=AE2+BE2=2BE2,
    ∵∠DCB =∠EBD,∠CEB =∠BED,
    ∴△CEB∽△BED,
    ∴即,
    ∴AB2=2BE2=2ED·EC.
    【点睛】
    本题主要考查相似三角形的判定与性质、角平分线的定义、三角形内角和定理、等腰直角三角形的判定、勾股定理,熟练掌握相似三角形的判定与性质是解答的关键.
    4、
    (1)
    (2)
    【解析】
    (1)
    解:

    (2)
    解:


    【点睛】
    本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序”是解本题的关键,有理数的混合运算的运算顺序为:先乘方,再乘除,最后算加减,有括号先算括号内的运算.
    5、
    (1)2;
    (2)-7或-1或5;
    (3)t的值为或或6或10.
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)由“靠近距离”的定义,可得答案;
    (2)点P到线段AB的“靠近距离”为3时,有三种情况:①当点P在点A左侧时;②当点P在点A和点B之间时;③当点P在点B右侧时;
    (3)分四种情况进行讨论:①当点P在点A左侧,PA③当点P在点B左侧,PB(1)
    解:∵PA=-2-(-4)=2,PB=2-(-2)=4,PA<PB
    ∴点P到线段AB的“靠近距离”为:2
    故答案为:2;
    (2)
    ∵点A表示的数为-4,点B表示的数为2,
    ∴点P到线段AB的“靠近距离”为3时,有三种情况:
    ①当点P在点A左侧时,PA∵点A到线段AB的“靠近距离”为3,
    ∴-4-m=3
    ∴m=-7;
    ②当点P在点A和点B之间时,
    ∵PA=m+4,PB=2-m,
    如果m+4=3,那么m=-1,此时2-m=3,符合题意;
    ∴m=-1;
    ③当点P在点B右侧时,PB<PA,
    ∵点P到线段AB的“靠近距离”为3,
    ∴m-2=3,
    ∴m=5,符合题意;
    综上,所求m的值为-7或-1或5.
    故答案为-7或-1或5;
    (3)
    分四种情况进行讨论:①当点P在点A左侧,PA∴-3-(-6+2t)=2,∴t=;
    ②当点P在点A右侧,PA∴(-6+2t)-(-3)=2,∴t=;
    ③当点P在点B左侧,PB∴2+t-(-6+2t)=2,∴t=6;
    ④当点P在点B右侧,PB∴(-6+2t)-(2+t)=2,∴t=10;
    综上,所求t的值为或或6或10.
    【点睛】
    本题考查了新定义,一元一次方程的应用,数轴上两点间的距离,理解点到线段的“靠近距离”的定义,进行分类讨论是解题的关键.
    相关试卷

    模拟测评湖南省湘潭市中考数学考前摸底测评 卷(Ⅱ)(含答案详解): 这是一份模拟测评湖南省湘潭市中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共27页。试卷主要包含了和按如图所示的位置摆放,顶点B,下列式子中,与是同类项的是,如图,下列条件中不能判定的是等内容,欢迎下载使用。

    中考专题湖南省湘潭市中考数学模拟真题测评 A卷(含详解): 这是一份中考专题湖南省湘潭市中考数学模拟真题测评 A卷(含详解),共36页。试卷主要包含了如图,A,如图,某汽车离开某城市的距离y等内容,欢迎下载使用。

    模拟真题湖南省湘潭市中考数学模拟真题测评 A卷(含答案详解): 这是一份模拟真题湖南省湘潭市中考数学模拟真题测评 A卷(含答案详解),共25页。试卷主要包含了已知,则的补角等于,如图,在中,,,,则的度数为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map