数学第一册上册第二章 函数函数教案及反思
展开【教学目标】
1.根据要求求函数的解析式
2.了解分段函数及其简单应用
3.理解分段函数是一个函数,而不是几个函数
【教学重难点】
函数解析式的求法
【教学过程】
分段函数
由实际生活中,上海至港、澳、台地区信函部分资费表
引出问题:若设信函的重量(克)应支付的资费为元,能否建立函数的解析式?导出分段函数的概念。
通过分析课本第46页的例4、例5进一步巩固分段函数概念,明确建立分段函数解析式的一般步骤,学会分段函数图象的作法
可选例:1、动点P从单位正方形ABCD顶点A开始运动,沿正方形ABCD的运动路程为自变量,写出P点与A点距离与的函数关系式。
2、在矩形ABCD中,AB=4m,BC=6m,动点P以每秒1m的速度,从A点出发,沿着矩形的边按A→D→C→B的顺序运动到B,设点P从点A处出发经过秒后,所构成的△ABP 面积为m2,求函数的解析式。
3、以小组为单位构造一个分段函数,并画出该函数的图象。
2、典题
例1 国内投寄信函(外埠),每封信函不超过20g付邮资80分,超过20g而不超过40g付邮资160分,依次类推,每封x g(0
这个函数的图象是5条线段(不包括左端点),都平行于x轴,如图所示.
这一种函数我们把它称为分段函数
变式练习1 作函数y=|x-2|(x+1)的图像
分析 显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.
解:(1)当x≥2时,即x-2≥0时,
当x<2时,即x-2<0时,
.
∴
这是分段函数,每段函数图象可根据二次函数图象作出
例2画出函数y=|x|=的图象.
解:这个函数的图象是两条射线,分别是第一象限和第二象限的角平分线,如图所示.
说明:①再次说明函数图象的多样性;
②从例4和例5看到,有些函数在它的定义域中,对于自变量x的不同取值范围,对应法则不同,这样的函数通常称为分段函数.注意分段函数是一个函数,而不是几个函数.
③注意:并不是每一个函数都能作出它的图象,如狄利克雷(Dirichlet)函数D(x)=,我们就作不出它的图象.
变式练习2 作出分段函数的图像
解:根据“零点分段法”去掉绝对值符号,即:
=
作出图像如下
变式练习3. 作出函数的函数图像
解:
步骤:(1)作出函数y=2x3的图象
(2)将上述图象x轴下方部分以x轴为对称轴向上翻折(上方部分不变),即得y=|2x3|的图象
3、小结:本节课学习了分段函数及其简单应用,进一步学习了函数解析式的求法.
课后作业:(略)
【板书设计】
分段函数
典型例题
例1: 例2:
小结:
【作业布置】完成本节课学案预习下一节。
1.2.2 函数的表示方法
第二课时 分段函数
一 、预习目标
通过预习理解分段函数并能解决一些简单问题
二、预习内容
在同一直角坐标系中:做出函数的图象和函数的图象。
思考:问题1、所作出R上的图形是否可以作为某个函数的图象?
问题2、是什么样的函数的图象?和以前见到的图像有何异同?
问题3、如何表示这样的函数?
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
课内探究学案
一 、学习目标
1.根据要求求函数的解析式
2.了解分段函数及其简单应用
3.理解分段函数是一个函数,而不是几个函数
学习重难点:函数解析式的求法
二 、 学习过程
、分段函数
由实际生活中,上海至港、澳、台地区信函部分资费表
引出问题:若设信函的重量(克)应支付的资费为元,能否建立函数的解析式?导出分段函数的概念。
通过分析课本第46页的例4、例5进一步巩固分段函数概念,明确建立分段函数解析式的一般步骤,学会分段函数图象的作法
可选例:1、动点P从单位正方形ABCD顶点A开始运动,沿正方形ABCD的运动路程为自变量,写出P点与A点距离与的函数关系式。
2、在矩形ABCD中,AB=4m,BC=6m,动点P以每秒1m的速度,从A点出发,沿着矩形的边按A→D→C→B的顺序运动到B,设点P从点A处出发经过秒后,所构成的△ABP 面积为m2,求函数的解析式。
3、以小组为单位构造一个分段函数,并画出该函数的图象。
2、典题
例1 国内投寄信函(外埠),每封信函不超过20g付邮资80分,超过20g而不超过40g付邮资160分,依次类推,每封x g(0
例2画出函数y=|x|=的图象.
变式练习2 作出分段函数的图像
变式练习3. 作出函数的函数图像
三 、 当堂检测
教材第47页 练习A、B
课后练习与提高
1.定义运算设F(x)=f(x)g(x),若f(x)=sinx,g(x)=csx,x∈R,则F(x)的值域为( )
A.[-1,1] B. C. D.
2.已知则的值为( )
A.-2 B.-1 C.1 D.2
3.设函数若f(1)+f(a)=2,则a的所有可能的值是__________.
4.某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上标12的点B重合.将A、B两点间的距离d(cm)表示成t(s)的函数,则d=________,其中t∈[0,60].
5.对定义域分别是Df、Dg的函数y=f(x)、y=g(x),规定:函数h(x)=
.
(1)若函数,g(x)=x2,写出函数h(x)的解析式;
(2)求(1)中函数h(x)的值域;
(3)若g(x)=f(x+α),其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cs4x,并予以证明.
解答
1 解析:由已知得
即F(x)=
F(x)=sinx,
当,kZ时,F(x)∈[-1,];
F(x)=csx,当,k∈Z时,F(x)∈(-1,),故选C.
答案:C
3 解析:由已知可得,①当a≥0时,有e0+ea-1=1+ea-1=2,∴ea-1=1.∴a-1=0.∴a=1.②当-1<a<0时,有1+sin(a2π)=2,∴sin(a2π)=1.
∴.
又-1<a<0,∴0<a2<1,
∴当k=0时,有,∴.
综上可知,a=1或.
答案:1或
4 解析:由题意,得当时间经过t(s)时,秒针转过的角度的绝对值是弧度,因此当t∈(0,30)时,,由余弦定理,得
,
;当t∈(30,60)时,在△AOB中,,由余弦定理,得,,且当t=0或30或60时,相应的d(cm)与t(s)间的关系仍满足.
综上所述, ,其中t∈[0,60].
答案:
5 解:(1)
(2)当x≠1时,,
若x>1,则h(x)≥4,当x=2时等号成立;
若x<1,则h(x)≤0,当x=0时等号成立.
∴函数h(x)的值域是(-∞,0]∪{1}∪[4,+∞).
(3)解法一:令f(x)=sin2x+cs2x,,
则=cs2x-sin2x,
于是h(x)=f(x)·f(x+α)
=(sin2x+cs2x)(cs2x-sin2x)=cs4x.
解法二:令,,
则,
于是h(x)=f(x)·f(x+α)=()()
=1-2sin22x=cs4x. 重量级别
资费(元)
20克及20克以内
1.50
20克以上至100克
4.00
100克以上至250克
8.50
250克以上至500克
16.70
疑惑点
疑惑内容
重量级别
资费(元)
20克及20克以内
1.50
20克以上至100克
4.00
100克以上至250克
8.50
250克以上至500克
16.70
数学第一册上册函数教案: 这是一份数学第一册上册<a href="/sx/tb_c9527_t8/?tag_id=27" target="_blank">函数教案</a>,共5页。教案主要包含了教学目标,教学重难点,教学过程,板书设计,作业布置等内容,欢迎下载使用。
高中数学人教版第一册下册第四章 三角函数函数的奇偶性教学设计: 这是一份高中数学人教版第一册下册<a href="/sx/tb_c15374_t8/?tag_id=27" target="_blank">第四章 三角函数函数的奇偶性教学设计</a>,共7页。教案主要包含了教学目标,教学重难点,教学过程,板书设计,作业布置,当堂检测等内容,欢迎下载使用。
人教A版 (2019)必修 第一册3.1 函数的概念及其表示教案设计: 这是一份人教A版 (2019)必修 第一册3.1 函数的概念及其表示教案设计,共2页。