搜索
    上传资料 赚现金
    博爱县第一中学2023-2024学年高二下学期开学摸底考试数学试卷(含答案)
    立即下载
    加入资料篮
    博爱县第一中学2023-2024学年高二下学期开学摸底考试数学试卷(含答案)01
    博爱县第一中学2023-2024学年高二下学期开学摸底考试数学试卷(含答案)02
    博爱县第一中学2023-2024学年高二下学期开学摸底考试数学试卷(含答案)03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    博爱县第一中学2023-2024学年高二下学期开学摸底考试数学试卷(含答案)

    展开
    这是一份博爱县第一中学2023-2024学年高二下学期开学摸底考试数学试卷(含答案),共16页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题
    1.已知,,则( )
    A.B.C.D.
    2.已知函数满足,则下列描述正确的是( )
    A.点与点在x轴同侧
    B.若的图象在处的切线斜率小于0 ,则 一定存在点在x轴下方
    C.与的图象可能与x轴交于同一点
    D.函数不一定存在零点
    3.如图,在平行四边形ABCD中,点E是CD的中点,点F为线段BD上的一动点,若,则的最大值为( )
    A.B.C.1D.2
    4.已知A,B,C三点在直线l上,点O在直线l外,满足,其中,为等差数列中的项,记为数列的前n项和,则( )
    A.1010B.1011C.1012D.1013
    5.已知复数满足,则的取值范围为( )
    A.B.C.D.
    6.已知圆,直线,若当k的值发生变化时,直线l被圆C所截得的弦长的最小值为,则实数m的取值为( )
    A.B.C.D.
    7.下列关于空间向量的命题中,错误的是( )
    A.若非零向量,,满足,,则有
    B.任意向量,,满足
    C.若,,是空间的一组基底,且,则A,B,C,D四点共面
    D.已知向量,,若,则为锐角
    8.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有_______种( ).
    A.408B.120C.156D.240
    二、多项选择题
    9.盒子中有12个乒乓球,其中8个白球4个黄球,白球中有6个正品2个次品,黄球中有3个正品1个次品.依次不放回取出两个球,记事件“第次取球,取到白球”,事件“第次取球,取到正品”,.则下列结论正确的是( )
    A.B.C.D.
    10.关于函数有下述四个结论,其中结论正确的是( )
    A.是偶函数B.在区间单调递增
    C.在有3个零点D.的最大值为2
    11.已知直线,,则下列结论正确的是( )
    A.若直线l与直线平行,则
    B.直线l倾斜角的范围为
    C.当时,直线l与直线垂直
    D.直线l过定点
    三、填空题
    12.已知的内角A,B,C所对的边分别为a,b,c,若,,且,则_____________.
    13.已知正三棱锥,底面ABC是边长为2的正三角形,若,且,则正三棱锥外接球的半径为_____________.
    14.对任意的实数,圆上一点到直线的距离d的取值范围为___________.
    四、解答题
    15.在中,角A,B,C所对的边分别为a,b,c,且满足.
    (1)求角C;
    (2)若,求面积的最大值.
    16.如图,四边形ABCD是平行四边形,,E为CD的中点.以AE为轴,将折起,使得点D到达点M的位置,且平面平面ABE,以BE为轴,将折起,使得点C到达点N的位置,且平面平面ABE,设平面平面直线l.
    (1)求证:直线平面ABE;
    (2)若,求平面MNE与平面ABE夹角的余弦值.
    17.已知点,,动点M满足,记动点M的轨迹为曲线C.
    (1)求C的方程,并说明C是什么曲线;
    (2)过点P作曲线C的两条切线,求这两条切线的方程.
    18.已知动点到直线的距离比到点的距离大1,点P的轨迹为曲线,曲线是中心在原点,以为焦点的椭圆,且长轴长为4.
    (1)求曲线、的方程;
    (2)经过点F的直线与曲线相交于A、B两点,与曲线相交于M、N两点,若,求直线的方程.
    19.已知函数,.
    (1)当时,求函数的定义域;
    (2)当时,判断函数的奇偶性并证明;
    (3)给定实数且,试判断是否存在直线,使得函数的图象关于直线对称?若存在,求出的值(用a表示);若不存在,请说明理由.
    参考答案
    1.答案:A
    解析:令,,
    则,
    当时,,在区间上单调递增,
    ,即,故,
    因为,所以,即,故,
    所以,
    故选:A.
    2.答案:C
    解析:对于选项A,因为,则,所以点与点关于x轴对称,不在x轴同侧,所以A错误;
    对于选项B,因为的图象在处的切线斜率小于0,所以,
    又,所以, 如果,则,满足,且,,但的图象恒在x轴上方,所以B错误;
    对于选项C,因为,如果,则与的图象可能与轴交于同一点,所以C正确;
    对于选项D,因为,则,所以函数存在零点,所以D错误.
    故选:C.
    3.答案:A
    解析:设BD、AE交于O,因为,
    所以,所以,
    所以,则,
    所以,
    因为O、F、B三点共线,
    所以,即,
    所以,
    因为,,所以,
    当且仅当,即时等号成立,此时,
    所以,
    故选:A.
    4.答案:C
    解析:由A,B,C三点共线,且,可得,
    又因为数列为等差数列,可得.
    故选:C.
    5.答案:D
    解析:复数满足,
    则复数z对应的点的轨迹为以,为焦点,长轴长的椭圆,
    则椭圆短半轴长为,椭圆方程为,
    表示椭圆上的点到原点的距离,
    当点位于椭圆长轴上的顶点时,取值大值2;
    当点位于椭圆短轴上的顶点时,取值小值;
    故的取值范围为,
    故选:D.
    6.答案:C
    解析:由题意可知,圆C的圆心为原点O,半径为2,
    直线l交y轴于点,当直线l与OM垂直时,
    此时,,原点到直线的距离取最大值,即,
    因为直线被圆所截得的弦长的最小值为,即,解得.
    故选:C.
    7.答案:B
    解析:A:因为,,是非零向量,所以由,,可得,因此本选项说法正确;
    B:因为向量,不一定是共线向量,因此不一定成立,所以本选项说法不正确;
    C:,,是空间的一组基底,

    所以A,B,C,D四点共面,因此本选项说法正确;
    D:,
    当时,,
    若向量,同向,则有,
    所以有,则(舍去)
    所以向量,不能同向,
    因此为锐角,故本选项说法正确,
    故选:B.
    8.答案:A
    解析:根据题意,首先不做任何考虑直接全排列则有(种),
    当“乐”排在第一节有(种),
    当“射”和“御”两门课程相邻时有(种),
    当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),
    则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),
    故选:A.
    9.答案:AD
    解析:对A,,,所以,故A正确;
    对B,事件 “第2次取球,取到正品”,,故B错误;
    对C,事件 “第1次取球,取到正品且第2次取球,取到白球”,包括(正白,正白),(正白,次白),(正黄,正白),(正黄,次白),共有种情况,
    ,故C错误;
    对D,事件 “第1次取球,取到白球且第2次取球,取到正品”,包括(白正,白正),(白正,黄正),(白次,白正),(白次,黄正),共有种情况,
    ,又因为,,故D正确;
    故选:AD.
    10.答案:ACD
    解析:对于A:,又函数的定义域为R,A正确;
    对于B:当时,,其在单调递减,B错误;
    对于C:令,即,
    画出函数,在上的图象如下图:
    ,
    为实线图象,为虚线图象,
    观察图象可得,两个函数图象在上有3个交点,横坐标分别为,0,,
    故在有3个零点,C正确;
    对于D:对于,明显其最大值可以取到1,对于,明显其最大值也可以取到1,
    当时,和可同时取到最大值1,所以的最大值为2,D正确.
    故选:ACD.
    11.答案:BC
    解析:选项A,,存在斜率,
    直线l方程可化为:,
    直线也存在斜率,方程可化为,
    由,则两直线平行的充要条件为,
    即解得或2,故A错误;
    选项B,由直线l的斜率,
    则倾斜角的范围为,故B正确;
    选项C,当时,直线,斜率为1,
    又直线的斜率为-1,则两直线斜率之积为-1,故两直线垂直,C正确;
    选项D,,,令,得,
    故直线过定点,不过,D错误.
    故选:BC.
    12.答案:
    解析:由题意,,
    则由正弦定理可得,
    ,,,
    又,则,
    ,
    .又由,
    可得:,则,
    ,即,则,
    ∴,即,由解得:,
    由解得:,.
    由正弦定理可得:,解得:,,
    .
    故答案为:.
    13.答案:
    解析:设正三棱锥的底面中心为点,连接,则面,
    连接并延长,交于点,连接,如图所示,
    因为底面是正三角形,
    则为的中点,,,
    又,面,面,
    所以面,又因为面,
    所以,又因为,,
    因为,所以,故面,又因为面,
    所以面,
    因为面,面,所以,
    因为三棱锥是正三棱锥,且底面是边长为2的正三角形,
    所以两两垂直,且,
    将其补形成棱长为正方体,如图:
    所以正三棱锥外接球的半径为.
    故答案为:.
    14.答案:
    解析:由题意可知圆 的圆心为 , 半径 ,
    直线l方程可化为,
    令解得,所以直线l过定点,
    显然当直线l与圆C相切或相交时,d取最小值且,
    不妨令直线过原点,将代入,此时,
    设圆心到直线的距离为,当直线l与垂直时,取得最大值,下面证明:
    当OP与直线垂直时,记为直线,
    当OP不与直线垂直且直线不经过O时,记为直线,
    过O作交于Q点,如下图所示,
    由图可知为直角三角形,且为斜边,所以,
    所以取最大值时,与直线垂直时,
    故,,
    但此时l的方程为,即为,
    此时无论取何值都无法满足要求,故取不到,
    所以,
    故答案为:
    15.答案:(1)
    (2)
    解析:(1)因为,
    由正弦定理可得
    ,
    因为A、,则,可得,
    所以,,故.
    (2)由余弦定理可得,
    当且仅当时,等号成立,
    故,
    因此,面积的最大值为.
    16.答案:(1)证明见解析;
    (2)
    解析:(1)由题意知,分别取,的中点P,Q,
    连接,,则,.
    因为平面平面ABE,平面平面,平面MAE,
    所以平面ABE,同理平面,所以.
    因为平面,平面NBE,所以平面NBE.
    因为平面平面直线l,所以.
    又平面ABE,所以直线平面ABE.
    (2)不妨设,所以平行四边形ABCD中,,,
    所以,.
    又平行四边形ABCD中,,
    所以,所以,即.
    以E为原点,EA,EB所在直线分别为x轴,y轴,直线l为轴,建立如图的空间直角坐标系.
    又,则,
    所以,,,所以,.
    设平面MNE的法向量为,则得
    令,则,,所以平面MNE的一个法向量为.
    由(1)知,是平面ABE的一个法向量,
    则.
    所以平面MNE与平面ABE夹角的余弦值为.
    17.答案:(1),C表示以为圆心,为半径的圆
    (2)和
    解析:(1)设 ,由,可得 ,即,
    整理得,即方程可化为,
    所以曲线表示以为圆心,为半径的圆.
    (2)由题意,两切线的斜率均存在,设切线方程为,即,
    则圆心到切线的距离,解得或,
    所以两条切线方程为和.
    18.答案:(1),
    (2)或
    解析:(1)由题意知,点P到直线的距离等于,
    所以,点P的轨迹是以为焦点,为准线的抛物线,故曲线的方程为.
    因为椭圆的长轴长,为椭圆的一个焦点,则,,
    所以,,所以,曲线的方程为.
    (2)若直线的斜率不存在,则直线与抛物线只有一个公共点,不合乎题意,
    所以,直线的斜率必存在,则直线的方程为
    由,整理得,则,
    设、,则,,
    所以,,则,
    由,整理得,
    则,
    设、,则,,
    所以,,
    因为,即,可得,解得,
    所以,直线的方程为.
    19.答案:(1)
    (2)偶函数,证明见解析
    (3)存在符合题意
    解析:(1)当 时, ,要使函数有意义,则,
    即,解得,所以函数的定义域为;
    (2)当 时, ,函数为偶函数,证明如下:
    ,又函数 的定义域为R, 所以函数为偶函数;
    (3)假设存在直线,使得函数的图像关于直线对称,
    则,所以,
    即,即,
    所以,即,
    所以,所以,即,
    因为且,所以,
    故存在,使得函数的图像关于直线对称.
    相关试卷

    博爱县第一中学2022-2023学年高二下学期3月月考数学试卷(含答案): 这是一份博爱县第一中学2022-2023学年高二下学期3月月考数学试卷(含答案),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    陕西省部分学校2023-2024学年高二下学期开学摸底考试数学试卷(无答案): 这是一份陕西省部分学校2023-2024学年高二下学期开学摸底考试数学试卷(无答案),共4页。试卷主要包含了某质点的位移,在四面体中,,则,已知函数的导函数为,且,则必有等内容,欢迎下载使用。

    河南省焦作市博爱县第一中学2023-2024学年高二下学期开学摸底考试数学试题: 这是一份河南省焦作市博爱县第一中学2023-2024学年高二下学期开学摸底考试数学试题,共16页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map