终身会员
搜索
    上传资料 赚现金
    重难点突破03 立体几何中的截面问题(八大题型)-2024年高考数学一轮复习(新教材新高考)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      重难点突破03 立体几何中的截面问题(八大题型)(原卷版).docx
    • 解析
      重难点突破03 立体几何中的截面问题(八大题型)(解析版).docx
    重难点突破03 立体几何中的截面问题(八大题型)-2024年高考数学一轮复习(新教材新高考)01
    重难点突破03 立体几何中的截面问题(八大题型)-2024年高考数学一轮复习(新教材新高考)02
    重难点突破03 立体几何中的截面问题(八大题型)-2024年高考数学一轮复习(新教材新高考)03
    重难点突破03 立体几何中的截面问题(八大题型)-2024年高考数学一轮复习(新教材新高考)01
    重难点突破03 立体几何中的截面问题(八大题型)-2024年高考数学一轮复习(新教材新高考)02
    重难点突破03 立体几何中的截面问题(八大题型)-2024年高考数学一轮复习(新教材新高考)03
    还剩14页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重难点突破03 立体几何中的截面问题(八大题型)-2024年高考数学一轮复习(新教材新高考)

    展开
    这是一份重难点突破03 立体几何中的截面问题(八大题型)-2024年高考数学一轮复习(新教材新高考),文件包含重难点突破03立体几何中的截面问题八大题型原卷版docx、重难点突破03立体几何中的截面问题八大题型解析版docx等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。

    2、精练习题。复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
    3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
    4、重视错题。错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
    重难点突破03 立体几何中的截面问题
    目录
    解决立体几何截面问题的解题策略.
    1、坐标法
    所谓坐标法就是通过建立空间直角坐标系,将几何问题转化为坐标运算问题,为解决立体几何问题增添了一种代数计算方法.
    2、基底法
    所谓基底法是不需要建立空间直角坐标系,而是利用平面向量及空间向量基本定理作为依托,其理论依据是:若四点E、F、G、H共面,为空间任意点,则有:
    结论1:若与不共线,那么;
    结论2:.
    3、几何法
    从几何视角人手,借助立体几何中的线线平行、线面平行、面面平行的性质与判定定理以及平面几何相关定理、结论,通过论证,精准找到该截面与相关线、面的交点位置、依次连接这些点,从而得到过三点的完整截面,再依据题意完成所求解答或证明.
    题型一:截面作图
    例1.(2023·全国·高一专题练习)如图,正方体的棱长为6,是的中点,点在棱上,且.作出过点,,的平面截正方体所得的截面,写出作法;
    例2.(2023·江苏·高一专题练习)如图,棱长为2的正方体ABCD–A1B1C1D1中,E,F分别是棱AA1,CC1的中点,过E作平面,使得//平面BDF.
    (1)作出截正方体ABCD-A1B1C1D1所得的截面,写出作图过程并说明理由;
    (2)求平面与平面的距离.
    例3.(2023·全国·高一专题练习)(1)如图,棱长为2的正方体中,,是棱,的中点,在图中画出过底面中的心且与平面平行的平面在正方体中的截面,并求出截面多边形的周长为:______;
    (2)作出平面与四棱锥的截面,截面多边形的边数为______.
    变式1.(2023·全国·高一专题练习)如图①,正方体的棱长为,为线段的中点,为线段上的动点,过点、、的平面截该正方体所得的截面记为.

    (1)若,请在图①中作出截面(保留尺规作图痕迹);
    (2)若(如图②),试求截面将正方体分割所成的上半部分的体积与下半部分的体积之比.
    变式2.(2023·全国·高一专题练习)如图,已知正方体,点为棱的中点.

    (1)证明:平面.
    (2)证明:.
    (3)在图中作出平面截正方体所得的截面图形(如需用到其它点,需用字母标记并说明位置),并说明理由.
    变式3.(2023·江苏·高一专题练习)已知正方体是棱长为1的正方体,M是棱的中点,过C、、M三点作正方体的截面,作出这个截面图并求出截面的面积.
    题型二:截面图形的形状、面积及周长问题
    例4.(2023·全国·高三专题练习)如图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q 的平面截该正方体所得的截面记为S.则下列命题中正确命题的个数为( )
    ①当时,S为四边形;
    ②当时,S为等腰梯形;
    ③当时,S与的交点满足;
    ④当时,S为六边形;
    A.1B.2C.3D.4
    例5.(2023·四川成都·高二双流中学校考期中)已知正方体的棱长为,为线段上的动点,过点的平面截该正方体的截面记为,则下列命题正确的个数是()
    ①当且时,为等腰梯形;
    ②当分别为的中点时,几何体的体积为;
    ③当为中点且时,与的交点为,满足;
    ④当为中点且时,为五边形.
    A.1B.2C.3D.4
    例6.(2023·全国·高一专题练习)如图正方体,棱长为1,P为中点,Q为线段上的动点,过A、P、Q的平面截该正方体所得的截面记为.若,则下列结论错误的是( )
    A.当时,为四边形B.当时,为等腰梯形
    C.当时,为六边形D.当时,的面积为
    变式4.(2023·江苏镇江·高二扬中市第二高级中学校考开学考试)如图,在棱长为的正方体中,点、、分别是棱、、的中点,则由点、、确定的平面截正方体所得的截面多边形的面积等于 .

    变式5.(2023·河南信阳·高二信阳高中校考阶段练习)在一次通用技术实践课上,木工小组需要将正方体木块截去一角,要求截面经过面对角线上的点(如图),且与平面平行,已知,,则截面面积等于 .
    变式6.(2023·江苏泰州·高一泰州中学校考阶段练习)正方体的棱长是,其中是中点,是中点,则过点的截面面积是.
    变式7.(2023·全国·高三专题练习)已知直三棱柱的侧棱长为2,,,过,的中点,作平面与平面垂直,则所得截面周长为 .
    变式8.(2023·全国·高三专题练习)棱长为1的正方体中,点为棱的中点,则过,,三点的平面截正方体的截面周长为 .
    变式9.(2023·四川泸州·四川省泸县第二中学校联考模拟预测)如图,在棱长为2的正方体,中,点E为CD的中点,则过点C且与垂直的平面被正方体截得的截面周长为 .
    题型三:截面切割几何体的体积问题
    例7.(2023·广东广州·高一统考期末)在棱长为a的正方体中,E,F分别为棱BC,的中点,过点A,E,F作一个截面,该截面将正方体分成两个多面体,则体积较小的多面体的体积为 .
    例8.(2023·辽宁锦州·校考一模)在正四棱锥中,为的中点,过作截面将该四棱锥分成上、下两部分,记上、下两部分的体积分别为,则的最大值是 .
    例9.(2023·浙江·高二竞赛)在正四棱锥中,M在棱上且满足.过作截面将此四棱锥分成上,下两部分,记上,下两部分的体积分别为,,则的最大值为 .
    变式10.(2023·上海·高二专题练习)如图,正方体,中,E、F分别是棱AB、BC的中点,过点、E、F的截面将正方体分割成两个部分,记这两个部分的体积分别为,记,则 .
    变式11.(2023·全国·高一专题练习)如图所示,在长方体中,用截面截下一个三棱锥,则三棱锥的体积与剩余部分的体积之比为 .
    变式12.(2023·贵州贵阳·贵阳六中校考一模)在三棱柱中,底面,,点P是棱上的点,,若截面分这个棱柱为两部分,则这两部分的体积比为 .
    变式13.(2023·广东揭阳·高一普宁市华侨中学校考阶段练习)如图,正方体中,E、F分别是棱、的中点,则正方体被截面BEFC分成两部分的体积之比 .
    题型四:球与截面问题
    例10.(2023·湖南长沙·高三长沙一中校考阶段练习)如图,在棱长为1的正方体中,分别为棱的中点,过作该正方体外接球的截面,所得截面的面积的最小值为( )

    A.B.C.D.
    例11.(2023·福建福州·福建省福州第一中学校考模拟预测)在矩形中,,将沿对角线翻折至的位置,使得平面平面,则在三棱锥的外接球中,以为直径的截面到球心的距离为( )
    A.B.C.D.
    例12.(2023·海南·高三校联考期末)已知某球的体积为,该球的某截面圆的面积为,则球面上的点到该截面圆圆心的最大距离为( )
    A.1B.3C.D.
    变式14.(2023·江西南昌·江西师大附中校考三模)已知正方体的棱长为,为棱上的一点,且满足平面平面,则平面截四面体的外接球所得截面的面积为( )
    A.B.C.D.
    变式15.(2023·四川内江·四川省内江市第六中学校考模拟预测)已知球O是正三棱锥(底面是正三角形,顶点在底面的射影为底面中心)的外接球,,,点E是线段BC的中点,过点E作球O的截面,则所得截面面积的最小值是( )
    A.B.C.D.
    变式16.(2023·福建厦门·厦门外国语学校校考模拟预测)已知半径为4的球,被两个平面截得圆,记两圆的公共弦为,且,若二面角的大小为,则四面体的体积的最大值为( )
    A.B.C.D.
    变式17.(2023·全国·高三专题练习)已知球和正四面体,点在球面上,底面过球心,棱分别交球面于,若球的半径,则所得多面体的体积为( )
    A.B.C.D.
    变式18.(2023·天津红桥·统考二模)用与球心距离为1的平面去截球,所得的截面面积为,则球的体积为( )
    A.B.
    C.D.
    题型五:截面图形的个数问题
    例13.(2023·全国·高三专题练习)过正四面体的顶点P作平面,若与直线,,所成角都相等,则这样的平面的个数为( )个
    A.3B.4C.5D.6
    例14.(2023·陕西榆林·陕西省榆林中学校考三模)过正方体的顶点作平面,使得正方体的各棱与平面所成的角都相等,则满足条件的平面的个数为( )
    A.B.C.D.
    例15.(2023·全国·高三专题练习)设四棱锥的底面不是平行四边形,用平面去截此四棱锥,使得截面四边形是平行四边形,则这样的平面
    A.有无数多个B.恰有个C.只有个D.不存在
    变式19.(2023·浙江·模拟预测)过正四面体ABCD的顶点A作一个形状为等腰三角形的截面,且使截面与底面BCD所成的角为,这样的截面有( )
    A.6个B.12个C.16个D.18个
    变式20.(2023·上海杨浦·高二上海市控江中学校考期中)空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面:A,B,C,D中有三个点到的距离相同,另一个点到的距离是前三个点到的距离的2倍,这样的平面的个数是___________个
    题型六:平面截圆锥问题
    例16.(多选题)(2023·广东·高二统考期末)圆锥曲线为什么被冠以圆锥之名?因为它可以从圆锥中截取获得.我们知道,用一个垂直于圆锥的轴的平面去截圆锥,截口曲线(截而与圆锥侧面的交线)是一个圆,用一个不垂直于轴的平面截圆锥,当截面与圆锥的轴的夹角不同时,可以得到不同的截口曲线,它们分别是椭圆、抛物线、双曲线.因此,我们将圆、椭圆、抛物线、双曲线统称为圆锥曲线.截口曲线形状与和圆锥轴截面半顶角有如下关系;当时,截口曲线为椭圆;当时,截口曲线为抛物线:当时,截口曲线为双曲线.(如左图)
    现有一定线段AB与平面夹角(如上右图),B为斜足,上一动点P满足,设P点在的运动轨迹是,则( )
    A.当,时,是椭圆B.当,时,是双曲线
    C.当,时,是抛物线D.当,时,是椭圆
    例17.(2023·辽宁阜新·校考模拟预测)比利时数学家丹德林( GerminalDandelin)发现:在圆锥内放两个大小不同且不相切的球使得它们与圆锥的侧面相切,用与两球都相切的平面截圆锥的侧面得到的截线是椭圆.这个结论在圆柱中也适用,如图所示,在一个高为20,底面半径为4的圆柱体内放两个球,球与圆柱底面及侧面均相切.若一个平面与两个球均相切,则此平面截圆柱侧面所得的截线为一个椭圆,则该椭圆的短轴长为( )
    A.B.C.D.
    例18.(2023·安徽安庆·安徽省桐城中学校考一模).如图是数学家GerminalDandelin用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球,球的半径分别为4和1,球心距,截面分别与球,球切于点,,(,是截口椭圆的焦点),则此椭圆的离心率等于( )
    A.B.C.D.
    变式21.(2023·上海·高二专题练习)如图①,用一个平面去截圆锥得到的截口曲线是椭圆.许多人从纯几何的角度出发对这个问题进行过研究,其中比利时数学家Germinaldandelin()的方法非常巧妙,极具创造性.在圆锥内放两个大小不同的球,使得它们分别与圆锥的侧面、截面相切,两个球分别与截面相切于,在截口曲线上任取一点,过作圆锥的母线,分别与两个球相切于,由球和圆的几何性质,可以知道,,,于是.由的产生方法可知,它们之间的距离是定值,由椭圆定义可知,截口曲线是以为焦点的椭圆.
    如图②,一个半径为的球放在桌面上,桌面上方有一个点光源,则球在桌面上的投影是椭圆,已知是椭圆的长轴,垂直于桌面且与球相切,,则椭圆的焦距为( )
    A.B.C.D.
    变式22.(2023·全国·高三对口高考)如图,定点A和B都在平面内,定点,C是内异于A和B的动点,且.那么,动点C在平面内的轨迹是( )

    A.一条线段,但要去掉两个点B.一个圆,但要去掉两个点
    C.一个椭圆,但要去掉两个点D.半圆,但要去掉两个点
    变式23.(2023·全国·学军中学校联考模拟预测)已知空间中两条直线、异面且垂直,平面且,若点到、距离相等,则点在平面内的轨迹为( )
    A.直线B.椭圆C.双曲线D.抛物线
    变式24.(2023·宁夏银川·校联考二模)已知线段垂直于定圆所在的平面,是圆上的两点,是点在上的射影,当运动,点运动的轨迹( )
    A.是圆B.是椭圆C.是抛物线D.不是平面图形
    变式25.(2023·四川广安·高二广安二中校考期中)美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括明暗素描和结构素描,而学习几何体结构素描是学习索描的重要一步.某同学在画切面圆柱体(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体,原圆柱的母线被截面所截剩余的部分称为切面圆柱体的母线)的过程中,发现“切面”是一个椭圆,若切面圆柱体的最长母线与最短母线所确定的平面截切面圆柱体得到的截面图形是一个底角为60°的直角梯形,设圆柱半径,则该椭圆的焦距为( )
    A.B.C.D.
    变式26.(2023·全国·高三专题练习)如图,正方体,P为平面内一动点,设二面角的大小为,直线与平面所成角的大小为.若,则点P的轨迹是( )
    A.圆B.抛物线C.椭圆D.双曲线
    变式27.(2023·四川广安·高二统考期末)已知四棱锥,平面PAB,平面PAB,底面ABCD是梯形,,,,满足上述条件的四棱锥的顶点P的轨迹是( )
    A.椭圆B.椭圆的一部分C.圆D.不完整的圆
    变式28.(2023·全国·校联考模拟预测)用一个不垂直于圆锥的轴的平面截圆锥,当截面与圆锥的轴夹角不同时,可以得到不同的截口曲线,它们分别是椭圆、抛物线、双曲线.我们通常把圆、椭圆、抛物线、双曲线统称为圆锥曲线.已知某圆锥的轴截面是正三角形,平面与该圆锥的底而所成的锐二面角为,则平面截该圆锥所得椭圆的离心率为 .
    题型七:截面图形有关面积、长度及周长范围与最值问题
    例19.(2023·西藏林芝·统考二模)在三棱锥中,,平面经过的中点E,并且与BC垂直,当α截此三棱锥所得的截面面积最大时,此时三棱锥的外接球的表面积为( )
    A.B.C.D.
    例20.(2023·贵州·高二校联考阶段练习)已知圆锥的母线长为2,其侧面展开图的中心角为,则过圆锥顶点的截面面积最大值为( )
    A.1B.C.2D.
    例21.(2023·全国·高一专题练习)若球是正三棱锥的外接球,,点在线段上,,过点作球的截面,则所得的截面中面积最小的截面的面积为( )
    A.B.C.D.
    变式29.(2023·高一课时练习)在三棱锥中,,平面平面,三棱锥的所有顶点都在球的球面上,分别在线段上运动(端点除外),.当三棱锥的体积最大时,过点作球的截面,则截面面积的最小值为( )
    A.B.C.D.
    变式30.(2023·江西·高一宁冈中学校考期末)棱长为1的正方体的8个顶点都在球O的表面上,E,F分别为棱AB,的中点,则经过E,F球的截面面积的最小值为( )
    A.B.C.D.
    变式31.(2023·全国·高三对口高考)如图,正方体的棱长为,动点P在对角线上,过点P作垂直于的平面,记这样得到的截面多边形(含三角形)的周长为y,设,则当时,函数的值域为( )

    A.B.C.D.
    变式32.(2023·全国·高一专题练习)如图所示,在长方体中,点是棱上的一个动点,若平面与棱交于点,给出下列命题:
    ①四棱锥的体积恒为定值;
    ②四边形是平行四边形;
    ③当截面四边形的周长取得最小值时,满足条件的点至少有两个;
    ④直线与直线交于点,直线与直线交于点,则、、三点共线.
    其中真命题是( )
    A.①②③B.②③④C.①②④D.①③④
    变式33.(2023·高一课时练习)正方体中作一截面与垂直,且和正方体所有面相交,如图所示.记截面多边形面积为,周长为,则( )
    A.为定值,不为定值B.不为定值,为定值
    C.和均为定值D.和均不为定值
    变式34.(2023·四川内江·高二统考期末)如图所示,在长方体中,,点是棱上的一个动点,平面交棱于点,下列命题错误的是( )
    A.四棱锥的体积恒为定值
    B.存在点,使得平面
    C.存在唯一的点,使得截面四边形的周长取得最小值
    D.对于棱上任意一点,在棱上均有相应的点,使得平面
    题型八:截面有关的空间角问题
    例22.(2023·黑龙江哈尔滨·哈尔滨三中校考模拟预测)在正方体中,为中点,过的截面与平面的交线为,则异面直线与所成角的余弦值为( )
    A.B.C.D.
    例23.(2023·高一课时练习)在棱长为1的正方体中,E为的中点,过点A.C.E的截面与平面的交线为m,则异面直线m与所成角的正切值为( )
    A.B.C.D.
    例24.(2023·全国·高一专题练习)平面过正方体ABCD-A1B1C1D1的顶点A,//平面CB1D1,平面,平面,则m、n所成角的正弦值为( )
    A.B.C.D.
    变式35.(2023·四川成都·高三校联考期末)在正方体中,为线段的中点,设平面与平面的交线为,则直线与所成角的余弦值为( )
    A.B.C.D.
    变式36.(2023·陕西安康·高二统考期中)在正方体中,E为线段AD的中点,设平面与平面的交线为,则直线与所成角的余弦值为( )
    A.B.C.D.
    相关试卷

    重难点突破04 立体几何中的轨迹问题(六大题型)-2024年高考数学一轮复习(新教材新高考): 这是一份重难点突破04 立体几何中的轨迹问题(六大题型)-2024年高考数学一轮复习(新教材新高考),文件包含重难点突破04立体几何中的轨迹问题六大题型原卷版docx、重难点突破04立体几何中的轨迹问题六大题型解析版docx等2份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。

    【讲通练透】重难点突破03 立体几何中的截面问题(八大题型)-2024年高考数学重难点突破精讲: 这是一份【讲通练透】重难点突破03 立体几何中的截面问题(八大题型)-2024年高考数学重难点突破精讲,文件包含重难点突破03立体几何中的截面问题八大题型原卷版docx、重难点突破03立体几何中的截面问题八大题型解析版docx等2份试卷配套教学资源,其中试卷共76页, 欢迎下载使用。

    备战2024年高考数学重难点题型突破讲义 重难点专题34 立体几何体积问题八大题型汇总-【划重点】(新高考通用): 这是一份备战2024年高考数学重难点题型突破讲义 重难点专题34 立体几何体积问题八大题型汇总-【划重点】(新高考通用),文件包含重难点专题34立体几何体积问题八大题型汇总原卷版docx、重难点专题34立体几何体积问题八大题型汇总解析版docx等2份试卷配套教学资源,其中试卷共152页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        重难点突破03 立体几何中的截面问题(八大题型)-2024年高考数学一轮复习(新教材新高考)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map