【中考专题】湖南省岳阳市中考数学三年高频真题汇总 卷(Ⅲ)(含答案及详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列运算正确的是( )
A.B.C.D.
2、有理数,在数轴上对应点如图所示,则下面式子中正确的是( )
A.B.C.D.
3、一元二次方程的根为( ).
A.B.
C.,D.,
4、如图,有三块菜地△ACD、△ABD、△BDE分别种植三种蔬菜,点D为AE与BC的交点,AD平分∠BAC,AD=DE,AB=3AC,菜地△BDE的面积为96,则菜地△ACD的面积是( )
A.24B.27C.32D.36
5、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
A.2 个B.3 个C.4 个D.5 个.
6、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).
A.7B.6C.5D.4
7、如图是一个运算程序,若x的值为,则运算结果为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.2D.4
8、下列方程中,解为的方程是( )
A.B.C.D.
9、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
A.B.C.D.
10、下列式子中,与是同类项的是( )
A.abB.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2 m记作,则下降3m记作______.
2、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.
3、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作,垂足为点F.若,,则正方形ABCD的面积为______.
4、如图,和均为等边三角形,,分别在边,上,连接,,若,则__________.
5、如图,正方形 边长为 ,则 _____________
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
三、解答题(5小题,每小题10分,共计50分)
1、(数学概念)如图1,A、B为数轴上不重合的两个点,P为数轴上任意一点,我们比较线段PA和PB的长度,将较短线段的长度定义为点P到线段AB的“靠近距离”.特别地,若线段PA和PB的长度相等,则将线段PA或PB的长度定义为点P到线段AB的“靠近距离”.如图①,点A表示的数是-4,点B表示的数是2.
(1)(概念理解)若点P表示的数是-2,则点P到线段AB的“靠近距离”为______;
(2)(概念理解)若点P表示的数是m,点P到线段AB的“靠近距离”为3,则m的值为______(写出所有结果);
(3)(概念应用)如图②,在数轴上,点P表示的数是-6,点A表示的数是-3,点B表示的数是2.点P以每秒2个单位长度的速度沿数轴向右运动,同时点B以每秒1个单位长度的速度沿数轴向右运动.设运动的时间为t秒,当点P到线段AB的“靠近距离”为2时,求t的值.
2、第24届冬季奥林匹克运动会即将于2022年2月4日至2月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.随着冬奥会的日益临近,北京市民对体验冰雪活动也展现出了极高的热情.下图是随机对北京市民冰雪项目体验情况进行的一份网络调查统计图,请根据调查统计图表提供的信息,回答下列问题:
(1)都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的___________%,并在图中将统计图补面完整;
(2)此次网络调查中体验过冰壶运动的有120人,则参加过滑雪的有___________人;
(3)此次网络调查中体验过滑雪的人比体验过滑冰的人多百分之几?
3、如图,等腰直角△ABC中,∠BAC=90°,在BC上取一点D,使得CD=AB,作∠ABC的角平分线交AD于E,请先按要求继续完成图形:以A为直角顶点,在AE右侧以AE为腰作等腰直角△AEF,其中∠EAF=90°.再解决以下问题:
(1)求证:B,E,F三点共线;
(2)连接CE,请问△ACE的面积和△ABF的面积有怎样的数量关系,并说明理由.
4、为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上提供的信息,解答· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
下列问题:
(1)本次调查共抽取了多少名学生?
(2)①请补全条形统计图;
②求出扇形统计图中表示“及格”的扇形的圆心角度数.
(3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?
5、解方程
(1)
(2)
-参考答案-
一、单选题
1、C
【分析】
根据合并同类项法则解答即可.
【详解】
解:A、3x和4y不是同类项,不能合并,故A选项错误;
B、,故B选项错误;
C、,故C选项正确;
D、,故D选项错误,
故选:C.
【点睛】
本题考查合并同类项,熟练掌握合并同类项法则是解答的关键.
2、C
【分析】
先根据数轴可得,再根据有理数的加减法与乘法法则逐项判断即可得.
【详解】
解:由数轴得:.
A、,此项错误;
B、由得:,所以,此项错误;
C、,此项正确;
D、,此项错误;
故选:C.
【点睛】
本题考查了数轴、绝对值、有理数的加减法与乘法,熟练掌握数轴的性质是解题关键.
3、A
【分析】
根据方程特点,利用直接开平方法,先把方程两边开方,即可求出方程的解.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:,
两边直接开平方,得,
则.
故选:A.
【点睛】
此题主要考查了直接开平方法解一元二次方程,解题的关键是掌握直接开平方法的基本步骤及方法.
4、C
【分析】
利用三角形的中线平分三角形的面积求得S△ABD=S△BDE=96,利用角平分线的性质得到△ACD与△ABD的高相等,进一步求解即可.
【详解】
解:∵AD=DE,S△BDE=96,
∴S△ABD=S△BDE=96,
过点D作DG⊥AC于点G,过点D作DF⊥AB于点F,
∵AD平分∠BAC,
∴DG=DF,
∴△ACD与△ABD的高相等,
又∵AB=3AC,
∴S△ACD=S△ABD=.
故选:C.
【点睛】
本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.
5、C
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
故选C.
【点睛】
本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
6、A
【分析】
由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,,设,则,由勾股定理即可求出、,由计算即可得出答案.
【详解】
由折叠的性质得,,
∴,,
∴,
∵,
∴,
∴,
在与中,
,
∴,
∴,,
设,则,
∴,
解得:,
∴,,
∴.
故选:A.
【点睛】
本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.
7、A
【分析】
根据运算程序,根据绝对值的性质计算即可得答案.
【详解】
∵<3,
∴=,
故选:A.
【点睛】
本题考查绝对值的性质及有理数的加减运算,熟练掌握绝对值的性质及运算法则是解题关键.
8、D
【分析】
求出选项各方程的解即可.
【详解】
A、,解得:,不符合题意.
B、,解得:,不符合题意.
C、,解得:,不符合题意.
D、,解得:,符合题意.
故选:D .
【点睛】
此题考查的知识点是一元一次方程的解,关键是分别求出各方程的解.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
9、B
【分析】
根据三角尺可得,根据三角形的外角性质即可求得
【详解】
解:
故选B
【点睛】
本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
10、D
【分析】
根据同类项是字母相同,相同字母的指数也相同的两个单项式进行解答即可.
【详解】
解:A、ab与ab2不是同类项,不符合题意;
B、a2b与ab2不是同类项,不符合题意;
C、ab2c与ab2不是同类项,不符合题意;
D、-2ab2与ab2是同类项,符合题意;
故选:D.
【点睛】
本题考查同类项,理解同类项的概念是解答的关键.
二、填空题
1、
【解析】
【分析】
首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
【详解】
解:如果水位上升记为“+”,那么水位下降应记为“﹣”,所以水位下降3米记为﹣3m.
故答案为:.
【点睛】
此题考查的知识点是正数和负数,关键是在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.
2、##
【解析】
【分析】
分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.
【详解】
解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,
可知:顶点B(9,12),抛物线经过原点,
设抛物线的解析式为y=a(x-9)2+12,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,
故抛物线的解析式为:y=-(x−9)²+12,
∵PC=12,=1:2,
∴点C的坐标为(12,0),AC=6,
即可得点A的坐标为(12,6),
当x=12时,y=−(12−9)²+12==CE,
∵E在A的正上方,
∴AE=CE-AC=-6=,
故答案为:.
【点睛】
本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.
3、49
【解析】
【分析】
延长FE交AB于点M,则,,由正方形的性质得,推出是等腰直角三角形,得出,由勾股定理求出CM,故得出BC,由正方形的面积公式即可得出答案.
【详解】
如图,延长FE交AB于点M,则,,
∵四边形ABCD是正方形,
∴,
∴是等腰直角三角形,
∴,
在中,,
∴,
∴.
故答案为:49.
【点睛】
本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.
4、##45度
【解析】
【分析】
根据题意利用全等三角形的判定与性质得出和,进而依据进行计算即可.
【详解】
解:∵和均为等边三角形,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
∴
在和中,
,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.
5、##
【解析】
【分析】
根据正方形的性质可得,过E作EG⊥BC于G,证明三角形EGC是等腰直角三角形,再根据直角三角形BEG利用勾股定理列方程即可.
【详解】
过E作EG⊥BC于G
∵正方形 边长为2
∴,
∵
∴
∴三角形EGC是等腰直角三角形
∴,
在Rt△BEG中,
∴
解得:
∴
∴
【点睛】
本题考查正方形的性质及勾股定理,解题的关键是证明三角形EGC是等腰直角三角形,最终根据勾股定理列方程计算即可.
三、解答题
1、
(1)2;
(2)-7或-1或5;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)t的值为或或6或10.
【分析】
(1)由“靠近距离”的定义,可得答案;
(2)点P到线段AB的“靠近距离”为3时,有三种情况:①当点P在点A左侧时;②当点P在点A和点B之间时;③当点P在点B右侧时;
(3)分四种情况进行讨论:①当点P在点A左侧,PA
解:∵PA=-2-(-4)=2,PB=2-(-2)=4,PA<PB
∴点P到线段AB的“靠近距离”为:2
故答案为:2;
(2)
∵点A表示的数为-4,点B表示的数为2,
∴点P到线段AB的“靠近距离”为3时,有三种情况:
①当点P在点A左侧时,PA
∴-4-m=3
∴m=-7;
②当点P在点A和点B之间时,
∵PA=m+4,PB=2-m,
如果m+4=3,那么m=-1,此时2-m=3,符合题意;
∴m=-1;
③当点P在点B右侧时,PB<PA,
∵点P到线段AB的“靠近距离”为3,
∴m-2=3,
∴m=5,符合题意;
综上,所求m的值为-7或-1或5.
故答案为-7或-1或5;
(3)
分四种情况进行讨论:①当点P在点A左侧,PA
②当点P在点A右侧,PA
③当点P在点B左侧,PB
④当点P在点B右侧,PB
综上,所求t的值为或或6或10.
【点睛】
本题考查了新定义,一元一次方程的应用,数轴上两点间的距离,理解点到线段的“靠近距离”的定义,进行分类讨论是解题的关键.
2、
(1)12%.补图见解析
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)270
(3)12.5%
【分析】
(1)用冰壶的人所占百分比减去4个百分点即可求出百分比,按照百分比补全统计图即可;
(2)用120人除以体验过冰壶运动的百分比求出总人数,再乘以滑雪的百分比即可;
(3)求出体验过滑雪的人比体验过滑冰的人多多少人,再求出百分比即可.
(1)
解:都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的百分比为:16%-4%=12%,不全统计图如图:
故答案为:12%.
(2)
解:调查的总人数为:120÷24%=500(人),
参加过滑雪的人数为:500×54%=270(人),
故答案为:270
(3)
解:体验过滑冰的人数为:500×48%=240(人),
(270-240)÷240=12.5%,
体验过滑雪的人比体验过滑冰的人多12.5%.
【点睛】
本题考查了条形统计图,解题关键是准确从条形统计图中获取信息,正确进行计算求解.
3、
(1)见解析
(2)△ACE的面积和△ABF的面积相等.理由见解析
【分析】
(1)利用等腰直角三角形的性质得到∠CAD=∠CDA=67.5°,利用角平分线的性质得到∠ABE=∠DBE=22.5°,∠BEA=135°,即可推出∠BEA+∠AEF=180°;
(2)证明Rt△AEG≌Rt△AFH,利用全等三角形的性质得到EG= FH,则△ACE和△ABF等底等高,即可证明结论.
(1)
证明:∵等腰直角△ABC中,∠BAC=90°,
∴∠ABC=∠C=45°,AB=AC,
∵CD=AB,则CD=AC,
∴∠CAD=∠CDA==67.5°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠BAE=90°-∠CAD=22.5°,
∵AD平分∠ABC,
∴∠ABE=∠DBE=22.5°,
∴∠BEA=180°-∠ABE-∠BAE=135°,
∵△AEF是等腰直角三角形,且∠EAF=90°,
∴∠AEF=∠F=45°,
∴∠BEA+∠AEF=180°,
∴B,E,F三点共线;
(2)
解:△ACE的面积和△ABF的面积相等.理由如下:
过点E作EG⊥AC于点G,过点F作FH⊥BA交BA延长线于点H,
∵∠HAF=180°-∠BAE-∠EAF=180°-22.5°-90°=67.5°,∠CAE=67.5°,
∴∠HAF=∠CAE,
∵△AEF是等腰直角三角形,
∴AE=AF,
∴Rt△AEG≌Rt△AFH,
∴EG= FH,
∵AB=AC,
∴△ACE和△ABF等底等高,
∴△ACE的面积和△ABF的面积相等.
【点睛】
本题考查了等腰直角三角形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.
4、
(1)100名
(2)①见解析;②
(3)1440名
【分析】
(1)用不及格的人数除以不及格的人数占比即可得到总人数;
(2)①根据(1)算出的总人数先求出良好的人数,然后求出优秀的人数即可补全统计图;②先求出及格人数的占比,然后用360°乘以及格人数的占比即可得到答案;
(3)先求出样本中,优秀和良好的人数占比,然后估计总体中优秀和良好的人数即可.
(1)
解:由题意得抽取的学生人数为:(名);
(2)
解:①由题意得:良好的人数为:(名),
∴优秀的人数为:(名),
∴补全统计图如下所示:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
②由题意得:扇形统计图中表示“及格”的扇形的圆心角度数=;
(3)
解:由题意得:估计这次竞赛成绩为“优秀”和“良好”等级的学生共有(名).
【点睛】
本题主要考查了条形统计图与扇形统计图信息相关联,画条形统计图,求扇形统计图某一项的圆心角度数,用样本估计总体等等,正确读懂统计图是解题的关键.
5、
(1)x1=x2=1
(2)x1=,x2=3
【分析】
(1)利用配方法解方程;
(2)利用因式分解法解方程.
(1)
解:,
即(x-1)2=0,
∴x1=x2=1.
(2)
解:,
因式分解得:(2x-1)(x-3)=0,
∴2x-1=0或x-3=0,
∴x1=,x2=3.
【点睛】
本题考查了解一元二次方程-配方法及因式分解法,熟练掌握各自的解法是解本题的关键.
中考专题湖南省怀化市中考数学三年高频真题汇总卷(含答案详解): 这是一份中考专题湖南省怀化市中考数学三年高频真题汇总卷(含答案详解),共31页。试卷主要包含了一元二次方程的根为.等内容,欢迎下载使用。
中考专题湖南省武冈市中考数学三年高频真题汇总 卷(Ⅱ)(含答案详解): 这是一份中考专题湖南省武冈市中考数学三年高频真题汇总 卷(Ⅱ)(含答案详解),共24页。试卷主要包含了已知,则的补角等于,如图,下列条件中不能判定的是等内容,欢迎下载使用。
中考专题湖南省益阳市中考数学三年高频真题汇总卷(含答案详解): 这是一份中考专题湖南省益阳市中考数学三年高频真题汇总卷(含答案详解),共30页。试卷主要包含了如图,在中,,,,则的度数为,下列方程变形不正确的是,一元二次方程的根为.等内容,欢迎下载使用。