中考专题贵州省兴仁市中考数学模拟专项测试 B卷(含答案及解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.4米B.10米C.4米D.12米
2、如图,在平面直角坐标系xOy中,已知点A(1,0),B(3,0),C为平面内的动点,且满足∠ACB=90°,D为直线y=x上的动点,则线段CD长的最小值为( )
A.1B.2C.D.
3、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )
A.两人前行过程中的速度为180米/分B.的值是15,的值是2700
C.爸爸返回时的速度为90米/分D.运动18分钟或31分钟时,两人相距810米
4、在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )
A.B.C.D.
5、如图,有三块菜地△ACD、△ABD、△BDE分别种植三种蔬菜,点D为AE与BC的交点,AD平分∠BAC,AD=DE,AB=3AC,菜地△BDE的面积为96,则菜地△ACD的面积是( )
A.24B.27C.32D.36
6、如图,已知点是一次函数上的一个点,则下列判断正确的是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.y随x的增大而增大
C.当时,D.关于x的方程的解是
7、有理数a,b在数轴上对应的位置如图所示,则下列结论正确的是( ).
A.B.C.D.
8、如图,于点,于点,于点,下列关于高的说法错误的是( )
A.在中,是边上的高B.在中,是边上的高
C.在中,是边上的高D.在中,是边上的高
9、下列图形中,能用,,三种方法表示同一个角的是( )
A.B.
C.D.
10、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,等边边长为4,点D、E、F分别是AB、BC、AC的中点,分别以D、E、F为圆心,DE长为半径画弧,围成一个曲边三角形,则曲边三角形的周长为______.
2、如图中给出了某城市连续5天中,每一天的最高气温和最低气温(单位:),那么最大温差是________.
3、如图,在中,中线相交于点,如果的面积是4,那么四边形的面积是_________
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、新春佳节,小明和小颖去看望李老师,李老师用一种特殊的方式给他们分糖,李老师先东给小明1块,然后把糖盒里所剩糖的给小明,再拿给小颖2块,又把糖盒里所剩糖的给小颖.这样两人所得的糖块数相同.则李老师的糖盒中原来有_________块糖.
5、计算:__.
三、解答题(5小题,每小题10分,共计50分)
1、已知关于x的一元二次方程x2−(2m−2)x+(m2−2m)=0.
(1)请说明该方程实数根的个数情况;
(2)如果方程的两个实数根为x1,x2,且(x1+1)⋅(x2+1)=8,求m的值.
2、数学课上,王老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.
(1)请用两种不同的方法求图2大正方形的面积:
方法1: ;
方法2: ;
(2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系 ;
(3)根据(2)题中的等量关系,解决如下问题:
①已知:a+b=5,(a﹣b)2=13,求ab的值;
②已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.
3、第24届冬季奥林匹克运动会即将于2022年2月4日至2月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.随着冬奥会的日益临近,北京市民对体验冰雪活动也展现出了极高的热情.下图是随机对北京市民冰雪项目体验情况进行的一份网络调查统计图,请根据调查统计图表提供的信息,回答下列问题:
(1)都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的___________%,并在图中将统计图补面完整;
(2)此次网络调查中体验过冰壶运动的有120人,则参加过滑雪的有___________人;
(3)此次网络调查中体验过滑雪的人比体验过滑冰的人多百分之几?
4、如图,等腰直角△ABC中,∠BAC=90°,在BC上取一点D,使得CD=AB,作∠ABC的角平分线交AD于E,请先按要求继续完成图形:以A为直角顶点,在AE右侧以AE为腰作等腰直角△AEF,其中∠EAF=90°.再解决以下问题:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)求证:B,E,F三点共线;
(2)连接CE,请问△ACE的面积和△ABF的面积有怎样的数量关系,并说明理由.
5、定义:两边的平方和与这两边乘积的差等于第三边平方的三角形叫做“和谐三角形”.如图1,在ABC中,若AB2AC2ABACBC2,则ABC是“和谐三角形”.
(1)等边三角形一定是“和谐三角形”,是______命题(填“真”或“假”).
(2)若RtABC中,C90,ABc,ACb,BCa,且ba,若ABC 是“和谐三角形”,求a:b:c.
-参考答案-
一、单选题
1、B
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为﹣4,
∵水面AB宽为20米,
∴A(﹣10,﹣4),B(10,﹣4),
将A代入y=ax2,
﹣4=100a,
∴a=﹣,
∴y=﹣x2,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为﹣1,
∴﹣1=﹣x2,
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.
2、C
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
取AB的中点E,过点E作直线y=x的垂线,垂足为D,求出DE长即可求出答案.
【详解】
解:取AB的中点E,过点E作直线y=x的垂线,垂足为D,
∵点A(1,0),B (3,0),
∴OA=1,OB=3,
∴OE=2,
∴ED=2×=,
∵∠ACB=90°,
∴点C在以AB为直径的圆上,
∴线段CD长的最小值为−1.
故选:C.
【点睛】
本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.
3、D
【分析】
两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.
【详解】
解:∵3600÷20=180米/分,
∴两人同行过程中的速度为180米/分,故A选项不符合题意;
∵东东在爸爸返回5分钟后返回即第20分钟返回
∴m=20-5=15,
∴n=180×15=2700,故B选项不符合题意;
∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;
∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,
∴运动18分钟时两人相距3240-2430=810米;
∵返程过程中东东45-20=25分钟走了3600米,
∴东东返程速度=3600÷25=144米/分,
∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,
∴运动31分钟两人相距756米,故D选项符合题意;
故选D.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
4、D
【分析】
根据勾股定理可将AB的长求出,点B所经过的路程是以点A为圆心,以AB的长为半径,圆心角为90°的扇形.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:在Rt△ABC中,AB=,
∴点B所走过的路径长为=
故选D.
【点睛】
本题主要考查了求弧长,勾股定理,解题关键是将点B所走的路程转化为求弧长,使问题简化.
5、C
【分析】
利用三角形的中线平分三角形的面积求得S△ABD=S△BDE=96,利用角平分线的性质得到△ACD与△ABD的高相等,进一步求解即可.
【详解】
解:∵AD=DE,S△BDE=96,
∴S△ABD=S△BDE=96,
过点D作DG⊥AC于点G,过点D作DF⊥AB于点F,
∵AD平分∠BAC,
∴DG=DF,
∴△ACD与△ABD的高相等,
又∵AB=3AC,
∴S△ACD=S△ABD=.
故选:C.
【点睛】
本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.
6、D
【分析】
根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
【详解】
A.该一次函数经过一、二、四象限
, y随x的增大而减小,
故A,B不正确;
C. 如图,设一次函数与轴交于点
则当时,,故C不正确
D. 将点坐标代入解析式,得
关于x的方程的解是
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故D选项正确
故选D
【点睛】
本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
7、D
【分析】
先根据数轴可得,再根据有理数的减法法则、绝对值性质逐项判断即可得.
【详解】
解:由数轴的性质得:.
A、,则此项错误;
B、,则此项错误;
C、,则此项错误;
D、,则此项正确;
故选:D.
【点睛】
本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键.
8、C
【详解】
解:A、在中,是边上的高,该说法正确,故本选项不符合题意;
B、在中,是边上的高,该说法正确,故本选项不符合题意;
C、在中,不是边上的高,该说法错误,故本选项符合题意;
D、在中,是边上的高,该说法正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.
9、A
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
10、B
【分析】
根据三角尺可得,根据三角形的外角性质即可求得
【详解】
解:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选B
【点睛】
本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
二、填空题
1、
【解析】
【分析】
证明△DEF是等边三角形,求出圆心角的度数,利用弧长公式计算即可.
【详解】
解:连接EF、DF、DE,
∵等边边长为4,点D、E、F分别是AB、BC、AC的中点,
∴是等边三角形,边长为2,
∴∠EDF=60°,
弧EF的长度为,同理可求弧DF、DE的长度为,
则曲边三角形的周长为;
故答案为:.
【点睛】
本题考查了等边三角形的性质与判定和弧长计算,中位线的性质,解题关键是熟记弧长公式,正确求出圆心角和半径.
2、15
【解析】
【分析】
通过表格即可求得最高和最低气温,12月3日的温差最大,最大温差为10-(-5)=15℃;
【详解】
解:12月1日的温差:
12月2日的温差:
12月3日的温差:
12月4日的温差:
12月5日的温差:
,
最大温差是15,
故答案为:15.
【点睛】
此题考查了正数与负数以及有理数的减法,熟练掌握运算法则是解本题的关键.
3、8
【解析】
【分析】
如图所示,连接DE,先推出DE是△ABC的中位线,得到,DE∥AB,即可证明· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
△ABO∽△DEO,△CDE∽△CBA,得到,从而推出,即可得到,再由,即可得到,由,得到,则.
【详解】
解:如图所示,连接DE,
∵AD,BE分别是BC,AC边上的中线,
∴D、E分别是BC、AC的中点,
∴DE是△ABC的中位线,
∴,DE∥AB,
∴△ABO∽△DEO,△CDE∽△CBA,
∴,
∴,
∴,
∴,
∴
∵,
∴,
∵,
∴,
∴,
故答案为:8.
【点睛】
本题主要考查了相似三角形的性质与判定,三角形中位线定理,熟知相似三角形的性质与判定条件是解题的关键.
4、25
【解析】
【分析】
首先假设出李老师的糖盒中原有x块糖,这样分别表示出两人所得糖的数量,列出方程求解.
【详解】
解:设李老师的糖盒中原有x块糖,由题意得,
1+(x-1)=2+ [x-3-(x-1)],
x=25.
答:李老师的糖盒中原有25块糖.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:25.
【点睛】
此题主要考查了一元一次方程的应用,题目比较典型,关键根据两人所得的糖块数相同列出方程.
5、
【解析】
【分析】
先得出最简公分母为12,再进行通分和约分运算即可求出答案.
【详解】
解:原式
.
【点睛】
本题考查了有理数的加减混合运算,对于异分母分数的加减混合运算,先要通分转化成同分母分数的加减混合运算是解决问题的关键.
三、解答题
1、
(1)方程有两个不相等的实数根
(2)m=3或-3
【分析】
(1)根据根的判别式先求出Δ的值,再判断即可;
(2)根据根与系数的关系得出x1+x2=2m-2,x1•x2=m2-2m,代入计算即可求出答案.
(1)
解:∵a=1,b=−(2m−2),c= m2−2m,
∴ =2-4(m2-2m)=4m2-8m+4-4m2+8m=4>0,
∴方程有两个不相等的实数根;
(2)
解:∵(x1+1)⋅(x2+1)=8,
整理得x1x2+(x1+x2)+1=8,
∵x1+x2=2m-2,x1x2=m2-2m,
∴m2-2m+2m-2+1=8,
∴m2=9,
∴m=3或m=-3.
【点睛】
本题考查了根的判别式以及根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法.
2、
(1);
(2)
(3)①;②-2
【分析】
(1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;
(2)由(1)直接可得关系式;
(3)①由(a-b)2=a2+b2-2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021-a=x,a-2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=-2,再求(2021-a)(a-2020)=-2即可.
(1)
方法一:∵大正方形的边长为(a+b),
∴S=(a+b)2;
方法二:大正方形是由2个长方形,2个小正方形拼成,
∴S=b2+ab+ab+a2=a2+b2+2ab;
故答案为:(a+b)2,a2+b2+2ab;
(2)
由(1)可得(a+b)2=a2+b2+2ab;
故答案为:(a+b)2=a2+b2+2ab;
(3)
①∵(a-b)2=a2+b2-2ab=13①,
(a+b)2=a2+b2+2ab=25②,
由①-②得,-4ab=-12,
解得:ab=3;
②设2021-a=x,a-2020=y,
∴x+y=1,
∵(2021-a)2+(a-2020)2=5,
∴x2+y2=5,
∵(x+y)2=x2+2xy+y2=1,
∴2xy=1-(x2+y2)=1-5=-4,
解得:xy=-2,
∴(2021-a)(a-2020)=-2.
【点睛】
本题考查完全平方公式的几何背景,熟练掌握正方形、长方形面积的求法,灵活应用完全平方公式的变形是解题的关键.
3、
(1)12%.补图见解析
(2)270
(3)12.5%
【分析】
(1)用冰壶的人所占百分比减去4个百分点即可求出百分比,按照百分比补全统计图即可;
(2)用120人除以体验过冰壶运动的百分比求出总人数,再乘以滑雪的百分比即可;
(3)求出体验过滑雪的人比体验过滑冰的人多多少人,再求出百分比即可.
(1)
解:都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的百分比为:16%-4%=12%,不全统计图如图:
故答案为:12%.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)
解:调查的总人数为:120÷24%=500(人),
参加过滑雪的人数为:500×54%=270(人),
故答案为:270
(3)
解:体验过滑冰的人数为:500×48%=240(人),
(270-240)÷240=12.5%,
体验过滑雪的人比体验过滑冰的人多12.5%.
【点睛】
本题考查了条形统计图,解题关键是准确从条形统计图中获取信息,正确进行计算求解.
4、
(1)见解析
(2)△ACE的面积和△ABF的面积相等.理由见解析
【分析】
(1)利用等腰直角三角形的性质得到∠CAD=∠CDA=67.5°,利用角平分线的性质得到∠ABE=∠DBE=22.5°,∠BEA=135°,即可推出∠BEA+∠AEF=180°;
(2)证明Rt△AEG≌Rt△AFH,利用全等三角形的性质得到EG= FH,则△ACE和△ABF等底等高,即可证明结论.
(1)
证明:∵等腰直角△ABC中,∠BAC=90°,
∴∠ABC=∠C=45°,AB=AC,
∵CD=AB,则CD=AC,
∴∠CAD=∠CDA==67.5°,
∴∠BAE=90°-∠CAD=22.5°,
∵AD平分∠ABC,
∴∠ABE=∠DBE=22.5°,
∴∠BEA=180°-∠ABE-∠BAE=135°,
∵△AEF是等腰直角三角形,且∠EAF=90°,
∴∠AEF=∠F=45°,
∴∠BEA+∠AEF=180°,
∴B,E,F三点共线;
(2)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:△ACE的面积和△ABF的面积相等.理由如下:
过点E作EG⊥AC于点G,过点F作FH⊥BA交BA延长线于点H,
∵∠HAF=180°-∠BAE-∠EAF=180°-22.5°-90°=67.5°,∠CAE=67.5°,
∴∠HAF=∠CAE,
∵△AEF是等腰直角三角形,
∴AE=AF,
∴Rt△AEG≌Rt△AFH,
∴EG= FH,
∵AB=AC,
∴△ACE和△ABF等底等高,
∴△ACE的面积和△ABF的面积相等.
【点睛】
本题考查了等腰直角三角形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.
5、
(1)真;
(2)1::2
【分析】
(1)根据等边三角形的性质“三边都相等”,结合“和谐三角形”的定义即可判断;
(2)由勾股定理可知,根据是“和谐三角形”,可分类讨论:①当时;②当时;③当时,再结合,计算出符合题意的比即可.
(1)
根据等边三角形的性质可知:,
∴.
故等边是“和谐三角形”.
所以等边三角形一定是“和谐三角形”,是真命题.
故答案为:真.
(2)
∵是直角三角形,且,
∴,
由是“和谐三角形”,可分类讨论,
①当时.
故有,整理得:,
∴,整理得:.
∴.
此时,不符合题意(舍).
②当时.
故有,整理得:,
故此情况不存在(舍).
③当时.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故有,整理得:,
∴,整理得:.
∴.
【点睛】
本题考查判断命题的真假,等边三角形的性质和勾股定理.读懂题意,理解“和谐三角形”的定义是解答本题的关键.
中考专题湖南省中考数学模拟专项测试 B卷(含答案解析): 这是一份中考专题湖南省中考数学模拟专项测试 B卷(含答案解析),共31页。
中考专题湖南省株洲市中考数学模拟专项测试 B卷(含答案及解析): 这是一份中考专题湖南省株洲市中考数学模拟专项测试 B卷(含答案及解析),共24页。试卷主要包含了和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。
真题解析贵州省兴仁市中考数学模拟测评 卷(Ⅰ)(含答案详解): 这是一份真题解析贵州省兴仁市中考数学模拟测评 卷(Ⅰ)(含答案详解),共25页。试卷主要包含了代数式的意义是,单项式的次数是等内容,欢迎下载使用。