真题解析贵州省兴仁市中考数学模拟测评 卷(Ⅰ)(含答案及详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、不等式的最小整数解是( )
A.B.3C.4D.5
2、如图,下列条件中不能判定的是( )
A.B.C.D.
3、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
A.B.C.D.
4、抛物线的顶点为( )
A.B.C.D.
5、下列等式变形中,不正确的是( )
A.若,则B.若,则
C.若,则D.若,则
6、如图,在中,,D是BC的中点,垂足为D,交AB于点E,连接CE.若,,则BE的长为( )
A.3B.C.4D.
7、一枚质地均匀的骰子六个面上分别刻有1到6的点数,掷一次骰子,下列事件中是随机事件的是( )
A.向上的点数大于0B.向上的点数是7
C.向上的点数是4D.向上的点数小于7
8、下列不等式中,是一元一次不等式的是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
9、下列图形中,能用,,三种方法表示同一个角的是( )
A.B.
C.D.
10、2021年10月16日,中国神舟十三号载人飞船的长征二号F遥十三运载火箭在中国酒泉卫星发射中心按照预定时间精准点火发射,约582秒后,神舟十三号载人飞船与火箭成功分离,进入预定轨道,截至2021年11月2日,“神舟十三号”载人飞船已在轨飞行18天,距离地球约63800000千米,用科学记数法表示63800000为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、下列各数①-2.5,②0,③,④,⑤,⑥-0.52522252225…,是无理数的序号是______.
2、《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作.其中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:有若干人共同购买某种物品,如果每人出8钱,则多3钱;如果每人出7钱,则少4钱,问共有多少人?物品的价格是多少钱?用一元一次方程的知识解答上述问题设共有x人,依题意,可列方程为______.
3、如图, 已知在 Rt 中, , 将 绕点 逆时针旋转 后得 , 点 落在点 处, 点 落在点 处, 联结 , 作 的平分线 , 交线段 于点 , 交线 段 于点 , 那么 的值为____________.
4、在菱形中,对角线与之比是,那么________.
5、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,则D的坐标为_______,连接AC,BD.在y轴上存在一点P,连接PA,PB,使S四边形ABDC,则点P的坐标为_______.
三、解答题(5小题,每小题10分,共计50分)
1、已知平行四边形的顶点、分别在其的边、上,顶点、在其的对角线上.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
图1 图2
(1)如图1,求证:;
(2)如图2,若,,求的值;
(3)如图1,当,,求时,求的值.
2、计算:
(1);
(2).
3、如图,抛物线与x轴相交于点A,与y轴交于点B,C为线段OA上的一个动点,过点C作x轴的垂线,交直线AB于点D,交该抛物线于点E.
(1)求直线AB的表达式,直接写出顶点M的坐标;
(2)当以B,E,D为顶点的三角形与相似时,求点C的坐标;
(3)当时,求与的面积之比.
4、如图,在的正方形格纸中,是以格点为顶点的三角形,也称为格点三角形,请你在该正方形格纸中画出与成轴对称的所有的格点三角形(用阴影表示).
5、在平面直角坐标系xOy中,已知点A(1,0)和点B(5,0).对于线段AB和直线AB外的一点C,给出如下定义:点C到线段AB两个端点的连线所构成的夹角∠ACB叫做线段AB关于点C的可视角,其中点C叫做线段AB的可视点.
(1)在点D(-2,2)、E(1,4)、F(3,-2)中,使得线段AB的可视角为45°的可视点是 ;
(2)⊙P为经过A,B两点的圆,点M是⊙P上线段AB的一个可视点.
① 当AB为⊙P的直径时,线段AB的可视角∠AMB为 度;
② 当⊙P的半径为4时,线段AB的可视角∠AMB为 度;
(3)已知点N为y轴上的一个动点,当线段AB的可视角∠ANB最大时,求点N的坐标.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
-参考答案-
一、单选题
1、C
【分析】
先求出不等式解集,即可求解.
【详解】
解:
解得:
所以不等式的最小整数解是4.
故选:C.
【点睛】
本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.
2、A
【分析】
根据平行线的判定逐个判断即可.
【详解】
解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
∴∠3=∠5,
因为”同旁内角互补,两直线平行“,
所以本选项不能判断AB∥CD;
B、∵∠3=∠4,
∴AB∥CD,
故本选项能判定AB∥CD;
C、∵,
∴AB∥CD,
故本选项能判定AB∥CD;
D、∵∠1=∠5,
∴AB∥CD,
故本选项能判定AB∥CD;
故选:A.
【点睛】
本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
3、B
【分析】
根据三角形的中线的定义判断即可.
【详解】
解:∵AD、BE、CF是△ABC的三条中线,
∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
故A、C、D都不一定正确;B正确.
故选:B.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
4、B
【分析】
根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
【详解】
解:∵y=2(x-1)2+3,
∴抛物线的顶点坐标为(1,3),
故选:B.
【点睛】
本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
5、D
【分析】
根据等式的性质即可求出答案.
【详解】
解:A.a=b的两边都加5,可得a+5=b+5,原变形正确,故此选项不符合题意;
B.a=b的两边都除以3,可得,原变形正确,故此选项不符合题意;
C.的两边都乘6,可得,原变形正确,故此选项不符合题意;
D.由|a|=|b|,可得a=b或a=−b,原变形错误,故此选项符合题意.
故选:D.
【点睛】
本题考查等式的性质,解题的关键是熟练运用等式的性质.等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.
6、D
【分析】
勾股定理求出CE长,再根据垂直平分线的性质得出BE=CE即可.
【详解】
解:∵,,,
∴,
∵,D是BC的中点,垂足为D,
∴BE=CE,
故选:D.
【点睛】
本题考查了勾股定理,垂直平分线的性质,解题关键是熟练运用勾股定理求出CE长.
7、C
【分析】
根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.
【详解】
解:A. 向上的点数大于0,是必然事件,故此选项不符合题意;
B. 向上的点数是7,是不可能事件,故此选项不符合题意;
C. 向上的点数是4,是随机事件,故此选项符合题意;
D. 向上的点数小于7,是必然事件,故此选项不符合题意
故选C
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8、B
【分析】
根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.
【详解】
A、不等式中含有两个未知数,不符合题意;
B、符合一元一次不等式的定义,故符合题意;
C、没有未知数,不符合题意;
D、未知数的最高次数是2,不是1,故不符合题意.
故选:B
【点睛】
本题考查一元一次不等式的定义,掌握其定义是解决此题关键.
9、A
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
10、B
【分析】
科学记数法的表示形式为的形式,其中,n为整数;确定n的值时,要把原数变成a,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数的绝对值大于10时,n为正整数,当原数的绝对值小于1时,n为负整数.
【详解】
故选:B
【点睛】
本题考查了科学记数法的表示方法;科学记数法的表示形式为的形式,其中,n为整数,熟练地掌握科学记数法的表示方法是解本题的关键.
二、填空题
1、③
【解析】
【分析】
根据无理数的定义逐个判断即可.
【详解】
解:-2.5,是分数;-0.52522252225…是无限循环小数,是有理数;0,是整数;无理数· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
有,
故答案为:③.
【点睛】
本题考查了无理数的定义,能熟记无理数的定义是解此题的关键,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.
2、8x-3=7x+4
【解析】
【分析】
根据物品的价格相等列方程.
【详解】
解:设共有x人,依题意,可列方程为8x-3=7x+4,
故答案为:8x-3=7x+4.
【点睛】
此题考查了古代问题的一元一次方程,正确理解题意是解题的关键.
3、
【解析】
【分析】
根据题意以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,由可设,,,由旋转可得,,,则,,写出点坐标,由角平分线的性质得,即可得出,即可得,故可推出,求出点P坐标,由得,推出,故得,由相似三角形的性质即可得解.
【详解】
如图,以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,
∵,
∴设,,,
由旋转可得:,,,
∴,,
∴,,,
∵AN是平分线,
∴,
∴,即可得,
∴,
设直线BE的解析式为,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
把,代入得:,
解得:,
∴,
当时,,
解得:,
∴,
∴,
∵,,
∴,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查旋转的性质、正切值、角平分线的性质以、用待定系数法求一次函数及相似三角形的判定与性质,根据题意建立出适当的坐标找线段长度是解题的关键.
4、
【解析】
【分析】
首先根据菱形的性质得到,然后由对角线与之比是,可求得,然后根据正弦值的概念求解即可.
【详解】
解:如图所示,
∵在菱形中,
∴
∵对角线与之比是,即
∴
∴设,
∵菱形的对角线互相垂直,即
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴在中,
∴
故答案为:.
【点睛】
此题考查了菱形的性质,勾股定理和三角函数等知识,解题的关键是熟练掌握菱形的性质,勾股定理和三角函数的概念.
5、 (4,2) (0,4)或(0,-4)
【解析】
【分析】
根据B点的平移方式即可得到D点的坐标;设点P到AB的距离为h,则S△PAB=×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标;
【详解】
解:由题意得点D是点B(3,0)先向上平移2个单位,再向右平移1个单位的对应点,
∴点D的坐标为(4,2);
同理可得点C的坐标为(0,2),
∴OC=2,
∵A(-1,0),B(3,0),
∴AB=4,
∴,
设点P到AB的距离为h,
∴S△PAB=×AB×h=2h,
∵S△PAB=S四边形ABDC,
得2h=8,解得h=4,
∵P在y轴上,
∴OP=4,
∴P(0,4)或(0,-4).
故答案为:(4,2);(0,4)或(0,-4).
【点睛】
本题主要考查了根据平移方式确定点的坐标,坐标与图形,解题时注意:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
三、解答题
1、
(1)证明见解析
(2)
(3)
【分析】
(1)根据四边形,四边形都是平行四边形,得到和,然后证明,即可证明出;
(2)作于M点,设,首先根据,证明出四边形和四边形都是矩形,然后根据同角的余角相等得到,然后根据同角的三角函数值相等得到,即可表示出BF和FH的长度,进而可求出的值;
(3)过点E作于M点,首先根据题意证明出,得到,,然后根据等腰三角形三线合一的性质得到,设,根据题意表示出· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,,过点E作,交BD于N,然后由证明出,设,根据相似三角形的性质得出,然后由30°角所对直角边是斜边的一半得到,进而得到,解方程求出,然后表示出,根据勾股定理得到EH和EF的长度,即可求出的值.
(1)
解:∵四边形EFGH是平行四边形
∴
∴
∵四边形ABCD是平行四边形
∴
∴
在和中
∴
∴
∴
∴;
(2)
解:如图所示,作于M点,设
∵四边形和四边形都是平行四边形,
∴四边形和四边形都是矩形
∴
∴
∵
∴,
∴
∴
∴
∵
∴
由(1)得:
∴
∴;
(3)
解:如图所示,过点E作于M点
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵四边形ABCD是平行四边形
∴
∵
∴,即
∵
∴
∴
∴
∴
设
∵
∴
∴
∴
由(1)得:
∴
∴
过点E作,交BD于N
∵
∴
∴
∴
设
∴
∴
∵
∴
∵
∴
∴
∵
∴
∴
∴
解得:或(舍去)
∴
由勾股定理得:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴.
【点睛】
此题考查了矩形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是熟练掌握矩形的性质,相似三角形的性质和判定,勾股定理,根据题意正确作出辅助线求解.
2、
(1)
(2)-3
【分析】
(1)直接利用乘法分配律计算得出答案;
(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.
(1)
原式==-12-+14=;
(2)
原式=-4-3÷(-3)=-4+1=-3.
【点睛】
本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
3、
(1),,
(2),或,
(3)
【分析】
(1)求出、点的坐标,用待定系数法求直线的解析式即可;
(2)由题意可知是直角三角形,设,分两种情况讨论①当,时,,此时,由此可求;②当时,过点作轴交于点,可证明,则,可求,再由点在抛物线上,则可求,进而求点坐标;
(3)作的垂直平分线交轴于点,连接,过点作于点,则有,在中,,求出,,则,设,则,,则有,求出,即可求.
(1)
解:令,则,
或,
,
令,则,
,
设直线的解析式为,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
,
,;
(2)
解:,,
是直角三角形,
设,
①如图1,
当,时,,
,
,
(舍或,
,;
②如图2,
当时,
过点作轴交于点,
,,
,
,
,即,
,
,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(舍或,
,;
综上所述:点的坐标为,或,;
(3)
解:如图3,作的垂直平分线交轴于点,连接,过点作于点,
,
,
,
,
在中,,
,
,
,
,
,
设,则,,
,,,,,
,
,
,
,
.
【点睛】
本题是二次函数的综合题,求一次函数的解析式,解题的关键熟练掌握二次函数的图象及性质,三角形相似的性质与判定,分类讨论,数形结合也是解题的关键.
4、见详解
【分析】
先找对称轴,再得到个点的对应点,即可求解.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:根据题意画出图形,如下图所示:
【点睛】
本题主要考查了画轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
5、
(1)点E
(2)① 90;② 30或150
(3)N(0,)或(0,- )
【分析】
(1)AE、BE、AB满足勾股定理,且AE=AB,可知为等腰直角三角形,则∠AEB=45°,故E点可使线段AB的可视角为45°.
(2)①由半径所对的圆周角为90°即可得出∠AMB为90°.
②连接AP、BP,即可得出为等边三角形,由圆周角定理即可求得∠AMB为30°或150°.
(3)以AB为弦作圆M且过点N,由圆周角定理可得出当圆心角AMB最大时,圆周角ANB最大,由直线与圆的位置关系得出当y轴与圆M相切时圆心角AMB最大,进而可求得N点坐标.
(1)
连接AE,BE
∵AE=4,AB=4,AE⊥AB
∴为等腰直角三角形
∴∠AEB=45°.
故使得线段AB的可视角为45°的可视点是点E.
(2)
①有题意可知,此时AB为⊙P直径
由半径所对的圆周角为90°可知∠AMB为90°
②当⊙P的半径为4时,AB为⊙P一条弦,连接AP,BP
∵BP=AP=4,AB=4
∴为等边三角形
∴∠APB=60°
当点M在圆心一侧由圆周角定理知∠AMB=
当点M不在圆心一侧由内切四边形性质可知∠AMB=180°-30°=150°
(3)
(3)解: ∵过不在同一条直线上的三点确定一个圆,
∴A、B、N三点共圆,且过A、B两点的圆有无数个,圆心在直线x=3上.
即:点N的位置为过A、B两点的圆与y轴的交点.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
设过A、B两点的圆为⊙M,半径为r.
当r<3时,y轴与⊙M无交点,不符题意舍去.
如图所示:
当r=3时,y轴与⊙M交于一点,此时y轴与⊙M相切,切点即为点N.
当r>3时,y轴与⊙M1交于两点,此时y轴与⊙M1相交,交点设为N1、N2.
连接AM、BM、AN、BN、AM1、BM1、AN1、BN1.
此时,∠ANB、∠AMB分别为⊙M中弧AB所对的圆周角和圆心角;
∠AN1B、∠AM1B分别为⊙M1中弧AB所对的圆周角和圆心角.
∵∠1=∠M1AM+∠AM1M,
∠2=∠M1BM+∠BM1M,
∴∠1+∠2=∠M1AM+∠AM1M+∠BM1M+∠M1BM,
即∠AMB=∠M1AM+∠AM1B+∠M1BM
∴∠AMB>∠AM1B
∴∠ANB>∠AN1B
∵∠AN1B=∠AN2B
∴∠ANB>∠AN2B
∴当y轴与⊙M相切于点N时,∠ANB的值最大.
在Rt△AMC中,AM=r=3,AC=2
∴MC=
∵MN⊥y轴,MC⊥AB,
∴四边形OCMN为矩形.
∴ON=MC=
∴N(0,)
同理,当点N在y轴负半轴时,坐标为(0,- )
综述所述,N(0,)或(0,-).
【点睛】
本题考查了圆周角定理,将可视角的定义转化为圆内弦AB的圆周角是解题的关键,再结合图象计算即可.
真题解析贵州省兴仁市中考数学真题模拟测评 (A)卷(含详解): 这是一份真题解析贵州省兴仁市中考数学真题模拟测评 (A)卷(含详解),共31页。试卷主要包含了不等式的最小整数解是等内容,欢迎下载使用。
真题解析贵州省兴仁市中考数学历年真题汇总 卷(Ⅲ)(含详解): 这是一份真题解析贵州省兴仁市中考数学历年真题汇总 卷(Ⅲ)(含详解),共29页。试卷主要包含了下列式子中,与是同类项的是,下列方程中,解为的方程是,不等式的最小整数解是等内容,欢迎下载使用。
【真题汇编】贵州省铜仁市中考数学模拟测评 卷(Ⅰ)(含答案详解): 这是一份【真题汇编】贵州省铜仁市中考数学模拟测评 卷(Ⅰ)(含答案详解),共25页。试卷主要包含了一元二次方程的根为.,不等式的最小整数解是,下列各式中,不是代数式的是等内容,欢迎下载使用。