模拟真题湖南省岳阳市中考数学历年高频真题专项攻克 B卷(含答案及解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列图形是全等图形的是( )
A.B.C.D.
2、如图,点F在BC上,BC=EF,AB=AE,∠B=∠E,则下列角中,和2∠C度数相等的角是( )
A.B.C.D.
3、有理数在数轴上对应点的位置如图所示,下列结论中正确是( )
A.B.C.D.
4、下列不等式中,是一元一次不等式的是( )
A.B.C.D.
5、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为( )
A.15°B.10°C.20°D.25°
6、若和是同类项,且它们的和为0,则mn的值是( )
A.-4B.-2C.2D.4
7、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )
A.2个B.3个C.4个D.5个
8、为了完成下列任务,你认为最适合采用普查的是( )
A.了解某品牌电视的使用寿命B.了解一批西瓜是否甜
C.了解某批次烟花爆竹的燃放效果D.了解某隔离小区居民新冠核酸检查结果
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
9、下列计算中,正确的是( )
A.a2+a3=a5B.a•a=2aC.a•3a2=3a3D.2a3﹣a=2a2
10、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图是两个全等的三角形,图中字母表示三角形的边长,则∠的度数为________º.
2、如图,所有三角形都是直角三角形,所有四边形都是正方形,已知,,,,则_______.
3、如图所示, 用手电来测量古城墙高度,将水平的平面镜放置在点 处, 光线从点 出发,经过平面镜反射后,光线刚好照到古城墙 的顶端 处. 如果 , 米, 米, 米, 那么该古城墙的高度是__________米
4、如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,己知点,则点A的坐标是__________.
5、如图,在边长相同的小正方形组成的网格中,点A、B、O都在这些小正方形的顶点上,那么sin∠AOB的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、解方程:
(1);
(2).
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、如图,抛物线与x轴相交于点A,与y轴交于点B,C为线段OA上的一个动点,过点C作x轴的垂线,交直线AB于点D,交该抛物线于点E.
(1)求直线AB的表达式,直接写出顶点M的坐标;
(2)当以B,E,D为顶点的三角形与相似时,求点C的坐标;
(3)当时,求与的面积之比.
3、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).
(1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;
(2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;
(3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.
4、如图所示的正方形网格中,每个小正方形的边长都为1,的顶点都在网格线的交点上,点B坐标为,点C的坐标为.
(1)根据上述条件,在网格中画出平面直角坐标系;
(2)画出关于x轴对称图形;
(3)点A绕点B顺时针旋转90°,点A对应点的坐标为______.
5、已知:如图,在中,,,垂足为点D,E为边AC上一点,联结BE交CD于点F,并满足.求证:
(1);
(2)过点C作,交BE于点G,交AB于点M,求证:.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
-参考答案-
一、单选题
1、D
【详解】
解:A、不是全等图形,故本选项不符合题意;
B、不是全等图形,故本选项不符合题意;
C、不是全等图形,故本选项不符合题意;
D、全等图形,故本选项符合题意;
故选:D
【点睛】
本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.
2、D
【分析】
根据SAS证明△AEF≌△ABC,由全等三角形的性质和等腰三角形的性质即可求解.
【详解】
解:在△AEF和△ABC中,
,
∴△AEF≌△ABC(SAS),
∴AF=AC,∠AFE=∠C,
∴∠C=∠AFC,
∴∠EFC=∠AFE+∠AFC=2∠C.
故选:D.
【点睛】
本题主要考查了全等三角形的判定与性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.
3、C
【分析】
利用数轴,得到,,然后对每个选项进行判断,即可得到答案.
【详解】
解:根据数轴可知,,,
∴,故A错误;
,故B错误;
,故C正确;
,故D错误;
故选:C
【点睛】
本题考查了数轴,解题的关键是由数轴得出,,本题属于基础题型.
4、B
【分析】
根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.
【详解】
A、不等式中含有两个未知数,不符合题意;
B、符合一元一次不等式的定义,故符合题意;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C、没有未知数,不符合题意;
D、未知数的最高次数是2,不是1,故不符合题意.
故选:B
【点睛】
本题考查一元一次不等式的定义,掌握其定义是解决此题关键.
5、A
【分析】
利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.
【详解】
∵DE∥AF,
∴∠CDE=∠CFA=45°,
∵∠CFA=∠B+∠BAF,∠B=30°,
∴∠BAF=15°,
故选A.
【点睛】
本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.
6、B
【分析】
根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
【详解】
解:∵和是同类项,且它们的和为0,
∴2+m=3,n-1=-3,
解得m=1,n=-2,
∴mn=-2,
故选:B.
【点睛】
此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
7、C
【分析】
根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程,求其根即可,利用平移的思想,把y=的图像向上平移1个单位即可,确定方程的根.
【详解】
∵抛物线开口向上,
∴a>0,
∵抛物线与y轴的交点在y轴的负半轴上,
∴c<0,
∵抛物线的对称轴在y轴的右边,
∴b<0,
∴,
故①正确;
∵二次函数的图像与x轴交于点,
∴a-b+c=0,
根据对称轴的左侧,y随x的增大而减小,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
当x=-2时,y>0即,
故②正确;
∵,
∴b= -2a,
∴3a+c=0,
∴2a+c=2a-3a= -a<0,
故③正确;
根据题意,得,
∴,
解得,
故④错误;
∵=0,
∴,
∴y=向上平移1个单位,得y=+1,
∴为方程的两个根,且且.
故⑤正确;
故选C.
【点睛】
本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.
8、D
【分析】
普查和抽样调查的选择,需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
解:A、了解某品牌电视的使用寿命,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
B、了解一批西瓜是否甜,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
C、了解某批次烟花爆竹的燃放效果,调查带有破坏性,适合选择抽样调查,故此选项不符合题意;
D、了解某隔离小区居民新冠核酸检查结果,对结果的要求高,结果必须准确,应用全面调查方式,故此选项符合题意.
故选:D.
【点睛】
本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
9、C
【分析】
根据整式的加减及幂的运算法则即可依次判断.
【详解】
A. a2+a3不能计算,故错误;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
B. a•a=a2,故错误;
C. a•3a2=3a3,正确;
D. 2a3﹣a=2a2不能计算,故错误;
故选C.
【点睛】
此题主要考查幂的运算即整式的加减,解题的关键是熟知其运算法则.
10、B
【分析】
根据三角形的中线的定义判断即可.
【详解】
解:∵AD、BE、CF是△ABC的三条中线,
∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
故A、C、D都不一定正确;B正确.
故选:B.
【点睛】
本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
二、填空题
1、70
【解析】
【分析】
如图(见解析),先根据三角形的内角和定理可得,再根据全等三角形的性质即可得.
【详解】
解:如图,由三角形的内角和定理得:,
图中的两个三角形是全等三角形,在它们中,边长为和的两边的夹角分别为和,
,
故答案为:70.
【点睛】
本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.
2、46
【解析】
【分析】
利用勾股定理分别求出AB2,AC2,继而再用勾股定理解题.
【详解】
解:由图可知,AB2=
故答案为:46.
【点睛】
本题考查正方形的性质、勾股定理等知识,是基础考点,掌握相关知识是解题关键.
3、10
【解析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
根据两个三角形相似、对应边长度比成比例求出古城墙高度.
【详解】
∵入射角=反射角
∴入射角的余角∠APB=反射角的余角∠CPD
又AB⊥BD;CD⊥BD
∴△ABP∽△CDP
∴
∴CD=PD×=10
故答案为:10
【点睛】
本题考查相似三角形在求建筑物的高度中的应用,找出比例是关键.
4、(-3,9)
【解析】
【分析】
设长方形纸片的长为x,宽为y,根据点B的坐标,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再结合点A的位置,即可得出点A的坐标.
【详解】
解:设长方形纸片的长为x,宽为y,
依题意,得:,
解得:,
∴x-y=3,x+2y=9,
∴点A的坐标为(-3,6).
故答案为:(-3,9).
【点睛】
本题考查了二元一次方程组的应用以及坐标与图形性质,找准等量关系,正确列出二元一次方程组是解题的关键.
5、
【解析】
【分析】
如图,过点B向AO作垂线交点为C,勾股定理求出,的值,求出的长,求出值即可.
【详解】
解:如图,过点B向AO作垂线交点为C,O到AB的距离为h
∵,,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴
故答案为:.
【点睛】
本题考查了锐角三角函数值,勾股定理.解题的关键是表示出所需线段长.
三、解答题
1、
(1)x=2;
(2)x=-1
【分析】
(1)根据一元一次方程的解法解答即可;
(2)根据一元一次方程的解法解答即可.
(1)
解:去括号,得:8-4x+12=6x,
移项、合并同类项,得:-10x=-20,
化系数为1,得:x=2;
(2)
解:去分母,得:3(2x+3)-(x-2)=6,
去括号,得:6x+9-x+2=6,
移项、合并同类项,得:5x=-5,
化系数为1,得:x=-1;
【点睛】
本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.
2、
(1),,
(2),或,
(3)
【分析】
(1)求出、点的坐标,用待定系数法求直线的解析式即可;
(2)由题意可知是直角三角形,设,分两种情况讨论①当,时,,此时,由此可求;②当时,过点作轴交于点,可证明,则,可求,再由点在抛物线上,则可求,进而求点坐标;
(3)作的垂直平分线交轴于点,连接,过点作于点,则有,在中,,求出,,则,设,则,,则有,求出,即可求.
(1)
解:令,则,
或,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
令,则,
,
设直线的解析式为,
,
,
,
,
,;
(2)
解:,,
是直角三角形,
设,
①如图1,
当,时,,
,
,
(舍或,
,;
②如图2,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
当时,
过点作轴交于点,
,,
,
,
,即,
,
,
,
(舍或,
,;
综上所述:点的坐标为,或,;
(3)
解:如图3,作的垂直平分线交轴于点,连接,过点作于点,
,
,
,
,
在中,,
,
,
,
,
,
设,则,,
,,,,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
,
,
.
【点睛】
本题是二次函数的综合题,求一次函数的解析式,解题的关键熟练掌握二次函数的图象及性质,三角形相似的性质与判定,分类讨论,数形结合也是解题的关键.
3、
(1)点E,点F;
(2)()或();
(3)b的取值范围1<b<2或2<b<3.
【分析】
(1)根据以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,△ABE为直角三角形,且AE大于AB;以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,BF大于AB即可;
(2)根据点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,得出△AOB为等腰直角三角形,可得∠ABO=∠BAO=45°,以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,利用待定系数法求出AS解析式为,联立方程组,以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,∠OBR=90°-∠ABO=45°,可得△OBR为等腰直角三角形,OR=OB=1,点R(0,-1),利用平移的性质可求BR解析式为,联立方程组,解方程组即可;
(3)过点A与AB垂直的直线交直线y=2x+2于U,把△AOB绕点A顺时针旋转90°,得△AO′U,AO′=AO=1,O′U=OB=b,根据点U(-1,b-1)在直线上,得出方程,求出b的值,当过点A的直线与直线平行时没有 “关联点”,OB=OW=b=2,得出在1<b<2时,直线上存在两个AB的“关联点”,当b>2时,根据旋转性质将△AOB绕点A逆时针旋转90°得到△AO′U,得出AO′=AO=1,O′U=OB=b,根据点U(1,1+b)在直线上,列方程,得出即可.
(1)
解:点D与AB纵坐标相同,在直线AB上,不能构成直角三角形,
以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,
∴△ABE为直角三角形,且AE大于AB;
以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,AF=4>AB=2,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴点E与点F是AB关联点,
点G不在A、B两点垂直的直线上,故不能构成直角三角形,
故答案为点E,点F;
(2)
解:∵点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,
∴△AOB为等腰直角三角形,AB=
∴∠ABO=∠BAO=45°,
以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,
∴∠OAS=90°-∠BAO=45°,
∴△AOS为等腰直角三角形,
∴OS=OA=1,点S(1,0),
设AS解析式为代入坐标得:
,
解得,
AS解析式为,
∴,
解得,
点P(),
AP=,AP>AB
以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,
∴∠OBR=90°-∠ABO=45°,
∴△OBR为等腰直角三角形,
∴OR=OB=1,点R(0,-1),
过点R与AS平行的直线为AS直线向下平移2个单位,
则BR解析式为,
∴,
解得,
点P1(),
AP1=>,
∴点P为线段AB的关联点,点P的坐标为()或();
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)
解:过点A与AB垂直的直线交直线y=2x+2于U,
把△AOB绕点A顺时针旋转90°,得△AO′U,
∴AO′=AO=1,O′U=OB=b,
点U(-1,b-1)在直线上,
∴
∴,
∴当b>1时存在两个“关联点”,
当b<1时,UA<AB,不满足定义,没有两个“关联点”
当过点A的直线与直线平行时没有 “关联点”
与x轴交点X(-1,0),与y轴交点W(0,2)
∵OA=OX=1,∠XOW=∠AOB=90°,AB⊥XW,
∴△OXW顺时针旋转90°,得到△OAB,
∴OB=OW=2,
∴在1<b<2时,直线上存在两个AB的“关联点”,
当b>2时,将△AOB绕点A逆时针旋转90°得到△AO′U,
∴AO′=AO=1,O′U=OB=b,
点U(1,1+b)在直线上,
∴
∴解得
∴当2<b<3时, 直线上存在两个AB的“关联点”,
当b>3时,UA<AB,不满足定义,没有两个“关联点”
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
综合得,b的取值范围1<b<2或2<b<3.
【点睛】
本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.
4、
(1)见解析
(2)见解析
(3)(2,2)
【分析】
(1)根据点B坐标为,点C的坐标为确定原点,再画出坐标系即可;
(2)画出三角形顶点的对称点,再顺次连接即可;
(3)画出旋转后点的位置,写出坐标即可.
(1)
解:坐标系如图所示,
(2)
解:如图所示,就是所求作三角形;
(3)
解:如图所示,点A绕点B顺时针旋转90°的对应点为,坐标为(2,2);
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:(2,2)
【点睛】
本题考查了平面直角坐标系作图,解题关键是明确轴对称和旋转的性质,准确作出图形,写出坐标.
5、
(1)见解析
(2)见解析
【分析】
(1)由可得可得,然后再说明,即可证明结论;
(2)说明即可证明结论.
(1)
证明:∵
∴
∵,
∴∠BDC=
∴
∵,
∴∠A+∠ABC=90°,∠DCB+∠ABC=90°,
∴∠A=∠DCB
∵∠CBD=∠CBD
∴
∴.
(2)
解:∵
∴∠A=∠CBE
∵
∴∠DCB=∠CBE
∵∠AEB=∠CBE+∠BCE,∠CFM=∠CDA+∠FMD
∴∠AEB=∠CFM
∵CG⊥BE,CD⊥AB,∠CFD=∠DFB
∴∠MCF=∠FBD
∴
∴.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题主要考查了相似三角形的判定与性质,灵活运用相似三角形的判定定理成为解答本题的关键.
模拟真题湖南省湘潭市中考数学历年高频真题专项攻克 B卷(含答案详解): 这是一份模拟真题湖南省湘潭市中考数学历年高频真题专项攻克 B卷(含答案详解),共33页。试卷主要包含了下列等式变形中,不正确的是,下列方程中,解为的方程是等内容,欢迎下载使用。
模拟真题湖南省怀化市中考数学历年高频真题专项攻克 B卷(含答案及解析): 这是一份模拟真题湖南省怀化市中考数学历年高频真题专项攻克 B卷(含答案及解析),共25页。试卷主要包含了下列图像中表示是的函数的有几个,下列图形是全等图形的是等内容,欢迎下载使用。
【真题汇总卷】湖南省中考数学历年高频真题专项攻克 B卷(含答案详解): 这是一份【真题汇总卷】湖南省中考数学历年高频真题专项攻克 B卷(含答案详解),共26页。试卷主要包含了如图,A,下列式子中,与是同类项的是,和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。