![【真题汇总卷】湖南省新化县中考数学三年真题模拟 卷(Ⅱ)(含答案及解析)第1页](http://img-preview.51jiaoxi.com/2/3/15487674/0-1710324888109/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【真题汇总卷】湖南省新化县中考数学三年真题模拟 卷(Ⅱ)(含答案及解析)第2页](http://img-preview.51jiaoxi.com/2/3/15487674/0-1710324888150/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【真题汇总卷】湖南省新化县中考数学三年真题模拟 卷(Ⅱ)(含答案及解析)第3页](http://img-preview.51jiaoxi.com/2/3/15487674/0-1710324888182/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【真题汇总卷】湖南省新化县中考数学三年真题模拟 卷(Ⅱ)(含答案及解析)
展开这是一份【真题汇总卷】湖南省新化县中考数学三年真题模拟 卷(Ⅱ)(含答案及解析),共29页。试卷主要包含了如图个三角形.,下列运算正确的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
A.B.
C.D.
2、整式的值随x取值的变化而变化,下表是当x取不同值时对应的整式的值:
则关于x的方程的解为( )
A.B.C.D.
3、下列现象:
①用两个钉子就可以把木条固定在墙上
②从A地到B地架设电线,总是尽可能沿着线段AB架设
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线
④把弯曲的公路改直,就能缩短路程
其中能用“两点之间线段最短”来解释的现象有( )
A.①④B.①③C.②④D.③④
4、如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2),再分别连接图(2)中间的小三角形三边中点得到图(3),按这种方法继续下去,第6个图形有( )个三角形.
A.20B.21C.22D.23
5、下列运算正确的是( )
A.B.C.D.
6、已知单项式5xayb+2的次数是3次,则a+b的值是( )
A.1B.3C.4D.0
7、如图,已知点是一次函数上的一个点,则下列判断正确的是( )
A.B.y随x的增大而增大
C.当时,D.关于x的方程的解是
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
8、若把边长为的等边三角形按相似比进行缩小,得到的等边三角形的边长为( )
A.B.C.D.
9、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )
A.B.C.D.
10、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )
A.2个B.3个C.4个D.5个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图, 已知在 Rt 中, , 将 绕点 逆时针旋转 后得 , 点 落在点 处, 点 落在点 处, 联结 , 作 的平分线 , 交线段 于点 , 交线 段 于点 , 那么 的值为____________.
2、计算:__.
3、如图,,D为外一点,且交的延长线于E点,若,则_______.
4、长方形纸片按图中方式折叠,其中为折痕,如果折叠后在一条直线上,那么的大小是________度.
5、已知点P是线段AB的黄金分割点,AP>PB.若AB=2,则AP=_____.
三、解答题(5小题,每小题10分,共计50分)
1、某商品每天可售出300件,每件获利2元.为了尽快减少库存,店主决定降价销售.根据经验可知,如果每件降价0.1元,平均每天可多售出20件,店主要想平均每天获利500元,每件商品应降价多少元?
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、如图1,在平而直角坐标系中,抛物线(、、为常数,)的图像与轴交于点、两点,与轴交于点,且抛物线的对称轴为直线.
(1)求抛物线的解析式;
(2)在直线上方的抛物线上有一动点,过点作轴,垂足为点,交直线于点;是否存在点,使得取得最大值,若存在请求出它的最大值及点的坐标;若不存在,请说明理由;
(3)如图2,若点是抛物线上另一动点,且满足,请直接写出点的坐标.
3、某演出票价为110元/人,若购买团体票有如下优惠:
例如:200人作为一个团体购票,则需要支付票款元.甲、乙两个班全体学生准备去观看该演出,如果两个班作为一个团体去购票,则应付票款10065元.请列方程解决下列问题:
(1)已知两个班总人数超过100人,求两个班总人数;
(2)在(1)条件下,若甲班人数多于50人.乙班人数不足50人,但至少25人,如果两个班单独购票,一共应付票款11242元.求甲、乙两班分别有多少人?
4、已知:如图,在中,,,垂足为点D,E为边AC上一点,联结BE交CD于点F,并满足.求证:
(1);
(2)过点C作,交BE于点G,交AB于点M,求证:.
5、计算:
(1)
(2)
-参考答案-
一、单选题
1、B
【分析】
根据增长率问题的计算公式解答.
【详解】
解:第2年的销售量为,
第3年的销售量为,
故选:B.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.
2、A
【分析】
根据等式的性质把变形为;再根据表格中的数据求解即可.
【详解】
解:关于x的方程变形为,
由表格中的数据可知,当时,;
故选:A.
【点睛】
本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.
3、C
【分析】
直接利用直线的性质和线段的性质分别判断得出答案.
【详解】
解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;
②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;
④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.
故选:C.
【点睛】
本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.
4、B
【分析】
由第一个图中1个三角形,第二个图中5个三角形,第三个图中9个三角形,每次递增4个,即可得出第n个图形中有(4n-3)个三角形.
【详解】
解:由图知,第一个图中1个三角形,即(4×1-3)个;
第二个图中5个三角形,即(4×2-3)个;
第三个图中9个三角形,即(4×3-3)个;
…
∴第n个图形中有(4n-3)个三角形.
∴第6个图形中有个三角形
故选B
【点睛】
本题考查了图形变化的一般规律问题.能够通过观察,掌握其内在规律是解题的关键.
5、C
【分析】
根据合并同类项法则解答即可.
【详解】
解:A、3x和4y不是同类项,不能合并,故A选项错误;
B、,故B选项错误;
C、,故C选项正确;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
D、,故D选项错误,
故选:C.
【点睛】
本题考查合并同类项,熟练掌握合并同类项法则是解答的关键.
6、A
【分析】
根据单项式的次数的概念求解.
【详解】
解:由题意得:a+b+2=3,
∴a+b=1.
故选:A.
【点睛】
本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.
7、D
【分析】
根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
【详解】
A.该一次函数经过一、二、四象限
, y随x的增大而减小,
故A,B不正确;
C. 如图,设一次函数与轴交于点
则当时,,故C不正确
D. 将点坐标代入解析式,得
关于x的方程的解是
故D选项正确
故选D
【点睛】
本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
8、A
【分析】
直接根据位似图形的性质求解即可
【详解】
解:∵把边长为的等边三角形按相似比进行缩小,
∴得到的新等边三角形的边长为:
故选:A
【点睛】
本题主要考查了根据位似图形的性质求边长,熟练掌握位似图形的性质是解答本题的关键.
9、D
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
【详解】
解:设半径为r,如解图,过点O作,
∵OB=OE,
∴,
∵四边形ABCD为矩形,
∴∠C=90°=∠OFB,∠OBF=∠DBC,
∴.
∴,
∵,
∴,
∴,
∴,
∴.
在中,,即,
又∵为的切线,
∴,
∴,
解得或0(不合题意舍去).
故选D.
【点睛】
本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
10、C
【分析】
根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程,求其根即可,利用平移的思想,把y=的图像向上平移1个单位即可,确定方程的根.
【详解】
∵抛物线开口向上,
∴a>0,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵抛物线与y轴的交点在y轴的负半轴上,
∴c<0,
∵抛物线的对称轴在y轴的右边,
∴b<0,
∴,
故①正确;
∵二次函数的图像与x轴交于点,
∴a-b+c=0,
根据对称轴的左侧,y随x的增大而减小,
当x=-2时,y>0即,
故②正确;
∵,
∴b= -2a,
∴3a+c=0,
∴2a+c=2a-3a= -a<0,
故③正确;
根据题意,得,
∴,
解得,
故④错误;
∵=0,
∴,
∴y=向上平移1个单位,得y=+1,
∴为方程的两个根,且且.
故⑤正确;
故选C.
【点睛】
本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.
二、填空题
1、
【解析】
【分析】
根据题意以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,由可设,,,由旋转可得,,,则,,写出点坐标,由角平分线的性质得,即可得出,即可得,故可推出,求出点P坐标,由得,推出,故得,由相似三角形的性质即可得解.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
如图,以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,
∵,
∴设,,,
由旋转可得:,,,
∴,,
∴,,,
∵AN是平分线,
∴,
∴,即可得,
∴,
设直线BE的解析式为,
把,代入得:,
解得:,
∴,
当时,,
解得:,
∴,
∴,
∵,,
∴,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查旋转的性质、正切值、角平分线的性质以、用待定系数法求一次函数及相似三角形的判定与性质,根据题意建立出适当的坐标找线段长度是解题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、
【解析】
【分析】
先得出最简公分母为12,再进行通分和约分运算即可求出答案.
【详解】
解:原式
.
【点睛】
本题考查了有理数的加减混合运算,对于异分母分数的加减混合运算,先要通分转化成同分母分数的加减混合运算是解决问题的关键.
3、2
【解析】
【分析】
过点D作DM⊥CB于M,证出∠DAE=∠DBM,判定△ADE≌△BDM,得到DM=DE=3,证明四边形CEDM是矩形,得到CE=DM=3,由AE=1,求出BC=AC=2.
【详解】
解:∵DE⊥AC,
∴∠E=∠C=90°,
∴,
过点D作DM⊥CB于M,则∠M=90°=∠E,
∵AD=BD,
∴∠BAD=∠ABD,
∵AC=BC,
∴∠CAB=∠CBA,
∴∠DAE=∠DBM,
∴△ADE≌△BDM,
∴DM=DE=3,
∵∠E=∠C=∠M =90°,
∴四边形CEDM是矩形,
∴CE=DM=3,
∵AE=1,
∴BC=AC=2,
故答案为:2.
【点睛】
此题考查了全等三角形的判定及性质,矩形的判定及性质,等边对等角证明角度相等,正确引出辅助线证明△ADE≌△BDM是解题的关键.
4、90
【解析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.
【详解】
如图,根据折叠的性质,∠1=∠2,∠3=∠4,
∵∠1+∠2+∠3+∠4=180°,
∴2∠2+2∠3=180°,
∴∠2+∠3=90°,
∴=90°,
故答案为:90.
【点睛】
本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.
5、##
【解析】
【分析】
根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.
【详解】
解:由于P为线段AB=2的黄金分割点,且AP是较长线段;
则AP=2×=,
故答案为:.
【点睛】
本题考查了黄金分割点即线段上一点把线段分成较长和较短的两条线段,且较长线段的平方等于较短线段与全线段的积,熟练掌握黄金分割点的公式是解题的关键.
三、解答题
1、每件商品应降价1元.
【分析】
设每件商品应降价x元,得出降价后的销量及每件的盈利,然后可列出方程,解出即可.
【详解】
解:设每件商品应降价x元,则每天可售出300+20=300+200x件,
由题意得:(2-x)(300+200x)=500,
解得:x=(舍去)或x=1.
每件商品应降价1元.
【点睛】
本题考查一元二次方程的应用,关键找到降价和卖的件数的关系,根据利润列方程求解.
2、
(1)
(2);
(3)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
(1)待定系数法求解析式即可;
(2)过点作于点,求得,直线的解析式为,设,点在直线上,则,进而求得,根据二次函数的性质求得最值以及的值,进而求得的坐标;
(3)取点,连接,则,进而证明,根据的解析式求得的解析式,进而联立抛物线解析式即可求得点的坐标.
(1)
解:抛物线的对称轴为直线,与轴交于点、两点,与轴交于点,
设抛物线的解析式为,将点代入得
解得
抛物线的解析式为
即
(2)
解:如图,过点作于点,
设直线的解析式为,将点,
代入得:
解得
直线的解析式为
,
是等腰直角三角形
轴,
轴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
在中,
在直线上方的抛物线上有一动点,设
点在直线上,则
,
即当时,的最大值为:
此时
即
(3)
如图,取点,连接,则,
又
设直线的解析式为
则
解得
直线的解析式为
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
设直线的解析式为,过点
解得
直线的解析式为
是抛物线上的一点,则为直线与抛物线的交点,则
解得,
【点睛】
本题考查了二次函数综合,一次函数的平移问题,二次函数最值问题,掌握二次函数的图象的性质是解题的关键.
3、
(1)人
(2)甲班有人,乙班有人.
【分析】
(1)设两个班总人数为人,再根据各段费用之和为10065元,列方程,再解方程即可;
(2)设乙班有人,则甲班有人,当时,则 再列方程 再解方程可得答案.
(1)
解:设两个班总人数为人,则
整理得:
解得:
答:两个班总人数为人.
(2)
解:设乙班有人,则甲班有人,
当时,则
整理得:
解得:
答:甲班有人,乙班有人.
【点睛】
本题考查的是一元一次方程的应用,最优化选择问题,分段计费问题,理解题意,确定相等关系列方程是解本题的关键.
4、
(1)见解析
(2)见解析
【分析】
(1)由可得可得,然后再说明,即可证明结论;
(2)说明即可证明结论.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)
证明:∵
∴
∵,
∴∠BDC=
∴
∵,
∴∠A+∠ABC=90°,∠DCB+∠ABC=90°,
∴∠A=∠DCB
∵∠CBD=∠CBD
∴
∴.
(2)
解:∵
∴∠A=∠CBE
∵
∴∠DCB=∠CBE
∵∠AEB=∠CBE+∠BCE,∠CFM=∠CDA+∠FMD
∴∠AEB=∠CFM
∵CG⊥BE,CD⊥AB,∠CFD=∠DFB
∴∠MCF=∠FBD
∴
∴.
【点睛】
本题主要考查了相似三角形的判定与性质,灵活运用相似三角形的判定定理成为解答本题的关键.
5、
(1)
(2)
【解析】
(1)
解:
(2)
解:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序”是解本题的关键,有理数的混合运算的运算顺序为:先乘方,再乘除,最后算加减,有括号先算括号内的运算.
x
-1
0
1
2
3
-8
-4
0
4
8
购票人数
不超过50人的部分
超过50人,但不超过100人的部分
超过100人的部分
优惠方案
无优惠
每线票价优惠20%
每线票价优惠50%
相关试卷
这是一份【真题汇总卷】湖南省新化县中考数学备考真题模拟测评 卷(Ⅰ)(精选),共26页。试卷主要包含了下列方程中,解为的方程是等内容,欢迎下载使用。
这是一份【真题汇总卷】湖南省邵阳市中考数学真题模拟测评 (A)卷(含答案及解析),共31页。试卷主要包含了有理数 m等内容,欢迎下载使用。
这是一份【真题汇总卷】湖南省衡阳市中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析),共27页。试卷主要包含了代数式的意义是,有理数 m,一元二次方程的根为.等内容,欢迎下载使用。