【真题汇总卷】湖南省邵阳市中考数学真题模拟测评 (A)卷(含答案及解析)
展开
这是一份【真题汇总卷】湖南省邵阳市中考数学真题模拟测评 (A)卷(含答案及解析),共31页。试卷主要包含了有理数 m等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列式子中,与是同类项的是( )
A.abB.C.D.
2、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
A.75°B.70°C.65°D.55°
3、下列语句中,不正确的是( )
A.0是单项式B.多项式的次数是4
C.的系数是D.的系数和次数都是1
4、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
A.19°B.20°C.24°D.25°
5、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
A.B.C.D.
6、如图是一个运算程序,若x的值为,则运算结果为( )
A.B.C.2D.4
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
7、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
A.2 个B.3 个C.4 个D.5 个.
8、有理数 m、n 在数轴上的位置如图,则(m+n)(m+2n)(m﹣n)的结果的为( )
A.大于 0B.小于 0C.等于 0D.不确定
9、已知单项式5xayb+2的次数是3次,则a+b的值是( )
A.1B.3C.4D.0
10、如图,在中,D是延长线上一点,,,则的度数为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知,则________.
2、在平行四边形ABCD中,对角线AC长为8cm,,,则它的面积为______cm2.
3、计算:______.
4、若过某多边形一个顶点的所有对角线将这个多边形分成3个三角形,则这个多边形是________边形.
5、如图是两个全等的三角形,图中字母表示三角形的边长,则∠的度数为________º.
三、解答题(5小题,每小题10分,共计50分)
1、解方程:.
2、如图,一次函数的图象与反比例函数的图象相交于和两点.
(1)______,_______;
(2)结合图象直接写出不等式的解集.
3、如图,在中,,将绕点C旋转得到,连接AD.
(1)如图1,点E恰好落在线段AB上.
①求证:;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
②猜想和的关系,并说明理由;
(2)如图2,在旋转过程中,射线BE交线段AC于点F,若,,求CF的长.
4、(1)如图1,四边形ABCD是矩形,以对角线AC为直角边作等腰直角三角形EAC,且.请证明:;
(2)图2,在矩形ABCD中,,,点P是AD上一点,且,连接PC,以PC为直角边作等腰直角三角形EPC,,设,,请求出y与x的函数关系式;
(3)在(2)的条件下,连接BE,若点P在线段AD上运动,在点P的运动过程中,当是等腰三角形时,求AP的长.
5、在等腰中,,,点在直线上.
(1)如图1所示,点在上,点是的中点,连接.若,,求的周长;
(2)如图2所示,点在的延长线上,连接,过点作的垂线交于点.点在上,于点,连接.若,,求证:;
(3)如图3所示,点、在边上,连接、,,点是的中点,连接,与交于点.将沿着翻折,点的对应点是点,连接.若,,请直接写出的面积.
-参考答案-
一、单选题
1、D
【分析】
根据同类项是字母相同,相同字母的指数也相同的两个单项式进行解答即可.
【详解】
解:A、ab与ab2不是同类项,不符合题意;
B、a2b与ab2不是同类项,不符合题意;
C、ab2c与ab2不是同类项,不符合题意;
D、-2ab2与ab2是同类项,符合题意;
故选:D.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查同类项,理解同类项的概念是解答的关键.
2、B
【分析】
直接根据圆周角定理求解.
【详解】
解:,
.
故选:B.
【点睛】
本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3、D
【分析】
分别根据单独一个数也是单项式、多项式中每个单项式的最高次数是这个多项式的次数、单项式中的数字因数是这个单项式的系数、单项式中所有字母的指数和是这个单项式的次数解答即可.
【详解】
解:A、0是单项式,正确,不符合题意;
B、多项式的次数是4,正确,不符合题意;
C、的系数是,正确,不符合题意;
D、的系数是-1,次数是1,错误,符合题意,
故选:D.
【点睛】
本题考查单项式、单项式的系数和次数、多项式的次数,理解相关知识的概念是解答的关键.
4、B
【分析】
根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
【详解】
∵BD的垂直平分线交AB于点E,
∴
∴
∴
∵将沿AD折叠,点C恰好与点E重合,
∴,,
∵
∴
∵
∴
∴
故选:B.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
5、B
【分析】
如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
【详解】
解:如图:连接OB,
∵是的切线,B为切点
∴∠OBA=90°
∵
∴∠COB=90°-42°=48°
∴=∠COB=24°.
故选B.
【点睛】
本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
6、A
【分析】
根据运算程序,根据绝对值的性质计算即可得答案.
【详解】
∵<3,
∴=,
故选:A.
【点睛】
本题考查绝对值的性质及有理数的加减运算,熟练掌握绝对值的性质及运算法则是解题关键.
7、C
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
故选C.
【点睛】
本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
8、A
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
从数轴上看出,判断出,进而判断的正负.
【详解】
解:由题意知:
∴
∴
故选A.
【点睛】
本题考查了有理数加减的代数式正负的判断.解题的关键在于正确判断各代数式的正负.
9、A
【分析】
根据单项式的次数的概念求解.
【详解】
解:由题意得:a+b+2=3,
∴a+b=1.
故选:A.
【点睛】
本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.
10、B
【分析】
根据三角形外角的性质可直接进行求解.
【详解】
解:∵,,
∴;
故选B.
【点睛】
本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
二、填空题
1、3
【解析】
【分析】
把变形后把代入计算即可.
【详解】
解:∵,
∴,
故答案为:3.
【点睛】
此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算,也可以运用整体代入的思想,本题就利用了整体代入进行计算.
2、20
【解析】
【分析】
根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:如图,过B作BE⊥AC于E.
在直角三角形ABE中,
∠BAC=30°,AB=5,
∴BE=AB=,
S△ABC=AC•BE=10,
∴S▱ABCD=2S△ABC=20(cm2).
故答案为:20.
【点睛】
本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.
3、-1
【解析】
【分析】
根据有理数减法法则计算即可.
【详解】
解:,
故答案为:-1.
【点睛】
本题考查了有理数减法,解题关键是熟记有理数减法法则,准确计算.
4、五
【解析】
【分析】
根据过多边形的一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,计算可求解.
【详解】
解:设这是个n边形,由题意得
n-2=3,
∴n=5,
故答案为:五.
【点睛】
本题主要考查多边形的对角线,掌握多边形对角线的性质是解题的关键.
5、70
【解析】
【分析】
如图(见解析),先根据三角形的内角和定理可得,再根据全等三角形的性质即可得.
【详解】
解:如图,由三角形的内角和定理得:,
图中的两个三角形是全等三角形,在它们中,边长为和的两边的夹角分别为和,
,
故答案为:70.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.
三、解答题
1、
【分析】
去分母,移项合并同类项,系数化为1即可求解.
【详解】
.
去分母得:.
去括号得:
移项合并同类项得:.
系数化为1得:.
【点睛】
本题考查一元一次方程的解法,先去分母、移项合并、化系数为1.属于基础题.
2、
(1),
(2)或
【分析】
(1)把A(-1,m),B(n,-1)分别代入反比例函数解析式可求出m、n;
(2)确定A点坐标为(-1,2),B点坐标为(2,-1),然后根据图象即可求得.
(1)
把A(-1,m),B(n,-1)分别代入得-m=-2,-n=-2,
解得m=2,n=2,
故答案为:2,2
(2)
∵m=2,n=2,
∴A点坐标为(-1,2),B点坐标为(2,-1),
根据图象可得,不等式的解集为或.
【点睛】
本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.
3、
(1)①见解析;②,理由见解析
(2)3或
【分析】
(1)①由旋转的性质得,,,根据相似的判定定理即可得证;
②由旋转和相似三角形的性质得,由得,故,代换即可得出结果;
(2)设,作于H,射线BE交线段AC于点F,则,由旋转可证,由相似三角形的性质得,即,由此可证,故,求得,分情况讨论:①当线段BE交AC于F时、当射· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
线BE交AC于F时,根据相似比求出x的值,再根据勾股定理即可求出CF的长.
(1)
①∵将绕点C旋转得到,
∴,,,
∴,,
∴;
②,理由如下:
∵将绕点C旋转得到,
∴,
∵,,,
∴,
∵,
∴,
∴,
∴;
(2)
设,作于H,射线BE交线段AC于点F,则,
∵将绕点C旋转得到,
∴,,,
∴,,
∴,
∴,,即,
∵,
∴,
∴,
∵,,
∴
①当线段BE交AC于F时,
解得,(舍),
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
②当射线BE交AC于F时,
解得(舍),,
∴,
综上,CF的长为3或.
【点睛】
本题考查相似三角形的判定与性质以及旋转的性质,掌握相似三角形的判定定理以及性质是解题的关键.
4、(1)证明见解析;(2);(3)或
【分析】
(1)根据矩形和勾股定理的性质,得;再根据直角等腰三角形的性质计算,即可完成证明;
(2)根据矩形和勾股定理的性质,得,再根据勾股定理、直角等腰三角形的性质计算,即可得到答案;
(3)过点E作于点F,交AD于点Q,通过证明四边形和四边形是矩形,得,根据等腰直角三角形性质,推导得,通过证明,得,根据题意,等腰三角形分三种情况分析,当时,根据(2)的结论,得:,通过求解一元二次方程,得;当时,根据勾股定理列一元二次方程并求解,推导得不成立,当时,结合矩形的性质,计算得,从而完成求解.
【详解】
(1)∵四边形ABCD是矩形,AC是对角线
∴,
∴
∵以AC为直角边作等腰直角三角形EAC,且
∴;
(2)∵四边形ABCD是矩形,
∴,
∵以PC为直角边作等腰直角三角形EPC,
∴
∴;
(3)过点E作于点F,交AD于点Q,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵四边形ABCD是矩形
∴,,
∴四边形和四边形是矩形
∴
∵等腰直角三角形EPC,
∴,
∴
∴
在和中
∴,
∴,
∴,,
∴,
①当时,得:,
∴,
解得,
∵,故舍去;
②当时,得:
,
∴
∵
∴无实数解;
③当时
∵
∴
∵,,
∴四边形为矩形
∴
∵,
∴
∴
∴综上所述,或时,是等腰三角形.
【点睛】
本题考查了直角三角形、等腰三角形、勾股定理、矩形、一元二次方程、全等三角形的知识;解题的关键是熟练掌握等腰三角形、勾股定理、一元二次方程的性质,从而完成求解.
5、
(1)
(2)见解析
(3)
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)过点作于点,根据,设,则,进而根据等腰直角三角形的性质表示出,根据勾股定理求得,进而求得的值,即可求得的周长;
(2)过点作,垂足为,证明,设交于点,过点作交于,连接,证明四边形,是平行四边形,可得,又,进而即可得证;
(3)过点作,连接,延长交于点,连接,,根据翻折的性质可得,点是的中点,,,可得,根据等底同高,进而证明,即可得则,根据相似三角形的性质以及正弦的定义可得,再根据相似三角形的性质可得,进而即可求得
(1)
如图,过点作于点,
,,
设,则
在中,
是的中点
在中,,,
在中,
的周长为
的周长为
(2)
如图,过点作,垂足为,
在中,,,
,,
在与中
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
设交于点,过点作交于,连接,如图,
是的高,
垂直平分
,
,
又
又
又
四边形是平行四边形
又
四边形是平行四边形
(3)
如图,过点作,连接,延长交于点,连接,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
翻折
,,
点是的中点,
,
,
又
设
,
是的中点,
在中,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
如图,过点作
又是的中点,
又
是的中点,是的中点
,为的中点
设,则,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了解直角三角形,平行四边形的性质与判定,直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质与判定,轴对称的性质,勾股定理,相似三角形的性质与判定,掌握等腰直角三角形的性质,相似三角形的性质与判定是解题的关键.
相关试卷
这是一份【真题汇总卷】广西省桂林市中考数学模拟真题测评 A卷(含答案及解析),共23页。试卷主要包含了下列方程中,解为的方程是,如图,E,一元二次方程的根为.等内容,欢迎下载使用。
这是一份【真题汇总卷】湖南省中考数学五年真题汇总 卷(Ⅲ)(含答案解析),共27页。试卷主要包含了下列式子中,与是同类项的是等内容,欢迎下载使用。
这是一份【真题汇总卷】湖南省中考数学模拟真题测评 A卷(含答案详解),共26页。试卷主要包含了一元二次方程的根为等内容,欢迎下载使用。