河北省部分学校联考2024届高三下学期3月模拟(二)数学试题(无答案)
展开
这是一份河北省部分学校联考2024届高三下学期3月模拟(二)数学试题(无答案),共5页。试卷主要包含了下列不等式成立的是等内容,欢迎下载使用。
(时间120分钟,满分150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知抛物线C:,则C的准线方程为( )
A.B.C.D.
2.已知复数,复数,则( )
A.10B.C.D.1
3.已知命题p:,,则( )
A.p是真命题,:,B.p是真命题,:,
C.p是假命题,:,D.p是假命题,:,
4.已知圆台上下底面圆的半径分别为1,3,母线长为4,则该圆台的侧面积为( )
A.B.C.D.
5.下列不等式成立的是( )
A.B.C.D.
6.某校为了解本校高一男生身高和体重的相关关系,在该校高一年级随机抽取了7名男生,测量了他们的身高和体重得下表:
由表格制作成如图所示的散点图:
由最小二乘法计算得到经验回归直线的方程为,其相关系数为;经过残差分析,点对应残差过大,把它去掉后,再用剩下的6组数据计算得到经验回归直线的方程为,相关系数为.则下列选项正确的是( )
A.,,B.,,
C.,,D.,,
7.函数的导数仍是x的函数,通常把导函数的导数叫做函数的二阶导数,记作,类似地,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数…….一般地,阶导数的导数叫做n阶导数,函数的n阶导数记为,例如的n阶导数.若,则( )
A.B.50C.49D.
8.已知函数的部分图象如下,与其交于A,B两点.若,则( )
A.4B.3C.2D.1
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.甲在一次面试活动中,7位考官给他的打分分别为:61、83、84、87、90、91、92.则下列说法正确的有( )
A.去掉一个最低分和一个最高分后,分数的平均数会变小
B.去掉一个最低分和一个最高分后,分数的方差会变小
C.这7个分数的平均数小于中位数
D.这7个分数的第70百分位数为87
10.如图,在圆柱中,轴截面ABCD为正方形,点F是的上一点,M为BD与轴的交点.E为MB的中点,N为A在DF上的射影,且平面AMN,则下列选项正确的有( )
A.平面AMNB.平面DBFC.平面AMND.F是的中点
11.已知,是双曲线C:的左、右焦点,,为C右支上一点,,的内切圆的圆心为,半径为r,直线PE与x轴交于点,则下列结论正确的有( )
A.B.
C.D.若的内切圆与y轴相切,则双曲线C的离心率为
三、填空题:本题共3小题,每小题5分,共15分.
12.已知向量,的夹角为,且,,则______.
13.已知x是第二象限角,若,则______.
14.已知等差数列的公差与等比数列的公比相等,且,,,则______;若数列和的所有项合在一起,从小到大依次排列构成一个数列,数列的前n项和为,则使得成立的n的最小值为______.(第一空2分,第二空3分)
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15.(本小题满分13分)
在中,内角A,B,C所对的边分别为a,b,c,且满足.
(1)求角C的大小;
(2)若,,求的面积.
16.(本小题满分15分)
如图,P为圆锥的顶点,AC为圆锥底面的直径,为等边三角形,O是圆锥底面的圆心.为底面圆O的内接正三角形,且边长为,点E为线段PC中点.
(1)求证:平面平面ABD;
(2)M为底面圆O的劣弧AB上一点,且.求平面AME与平面PAC夹角的余弦值.
17.(本小题满分15分)
已知椭圆E:过点,且其离心率为.
(1)求椭圆E的方程;
(2)过点的斜率不为零的直线与椭圆E交于C,D两点,A,B分别为椭圆E的左、右顶点,直线AC,BD交于一点P,M为线段PB上一点,满足,问是否为定值,若是,求出该定值;若不是,说明理由(O为坐标原点).
18.(本小题满分17分)
某商场周年庆进行大型促销活动,为吸引消费者,特别推出“玩游戏,送礼券”的活动,活动期间在商场消费达到一定金额的人可以参加游戏,游戏规则如下:在一个盒子里放着六枚硬币,其中有三枚正常的硬币,一面印着字,一面印着花;另外三枚硬币是特制的,有两枚双面都印着字,一枚双面都印着花,规定印着字的面为正面,印着花的面为反面.游戏者蒙着眼睛随机从盒子中抽取一枚硬币并连续投掷两次,由工作人员告知投掷的结果,若两次投掷向上的面都是正面,则进入最终挑战,否则游戏结束,不获得任何礼券.最终挑战的方式是进行第三次投掷,有两个方案可供选择:方案一,继续投掷之前抽取的那枚硬币,如果掷出向上的面为正面,则获得200元礼券,方案二,不使用之前抽取的硬币,从盒子里剩余的五枚硬币中再次随机抽取一枚投掷,如果掷出向上的面为正面,则获得300元礼券,不管选择方案一还是方案二,如果掷出向上的面为反面,则获得100元礼券.
(1)求第一次投掷后,向上的面为正面的概率.
(2)若已知某顾客抽取一枚硬币后连续两次投掷,向上的面均为正面,求该硬币是正常硬币的概率.
(3)在已知某顾客进入了最终挑战环节的条件下,试分别计算他选择两种抽奖方案最终获得的礼券的数学期望,并以此判断应该选择哪种抽奖方案更合适.
19.(本小题满分17分)
已知函数.
(1)若函数有3个不同的零点,求a的取值范围;
(2)已知为函数的导函数,在上有极小值0,对于某点,在P点的切线方程为,若对于,都有,则称P为好点.
①求a的值;
②求所有的好点.身高x(单位:cm)
167
173
175
177
178
180
181
体重y(单位:kg)
90
54
59
64
67
72
76
相关试卷
这是一份河北省部分学校联考2024届高三下学期3月模拟(二)数学试题,共4页。
这是一份吉林省部分学校2024届高三下学期高考模拟(三)数学试题(无答案),共5页。试卷主要包含了选择题的作答,填空题和解答题的作答,已知函数的定义域为,且,,,则,在《增删算法统宗》中有如下问题等内容,欢迎下载使用。
这是一份吉林省部分学校2024届高三下学期高考模拟(三)数学试题(无答案),共5页。试卷主要包含了选择题的作答,填空题和解答题的作答,已知函数的定义域为,且,,,则,在《增删算法统宗》中有如下问题等内容,欢迎下载使用。