- 题型三 方程应用(复习讲义)(一元一次方程、二元一次方程、一元一次不等式、分式方程、一元二次方程应用)-备战2024年中考数学二轮复习高分突破(全国通用) 试卷 0 次下载
- 题型四 多边形证明(复习讲义)(三角形、平行四边形、矩形、正方形、菱形)-备战2024年中考数学二轮复习高分突破(全国通用) 试卷 0 次下载
- 题型四 多边形证明 类型二 特殊四边形证明(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用) 试卷 0 次下载
- 题型五 圆的相关证明与计算(复习讲义)-备战2024年中考数学二轮复习高分突破(全国通用) 试卷 0 次下载
- 题型五 圆的相关证明与计算 类型二 与切线有关的证明与计算(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用) 试卷 1 次下载
题型四 多边形证明 类型一 三角形全等与相似(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用)
展开1.如图,,,点在上,且.求证:.
【答案】见解析
【分析】
由题意易得,进而可证,然后问题可求证.
【详解】
证明:∵,
∴.
∵,,
∴.
∴.
【点睛】
本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.
2.如图,点A、B、D、E在同一条直线上,.求证:.
【答案】见解析
【分析】
根据,可以得到,然后根据题目中的条件,利用ASA证明△ABC≌△DEF即可.
【详解】
证明:点A,B,C,D,E在一条直线上
∵
∴
在与中
∴
【点睛】
本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.
3.如图,已知,,与相交于点,求证:.
【答案】证明见解析
【分析】
根据全等三角形的性质,通过证明,得,结合等腰三角形的性质,即可得到答案.
【详解】
∵,
∴(AAS),
∴,
∴.
【点睛】
本题考查了全等三角形、等腰三角形的知识;解题的关键是熟练掌握全等三角形、等腰三角形的性质,从而完成求解.
4.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE
【答案】证明见详解.
【分析】
根据“ASA”证明△ABE≌△ACD,然后根据全等三角形的对应边相等即可得到结论.
【详解】
证明:在△ABE和△ACD中,
∵,
△ABE≌△ACD (ASA),
∴AE=AD,
∴BD=AB–AD=AC-AE=CE.
【点睛】
本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
5.如图,在四边形中,与相交于点E.求证:.
【答案】见解析
【分析】
直接利用SSS证明△ACD≌△BDC,即可证明.
【详解】
解:在△ACD和△BDC中,
,
∴△ACD≌△BDC(SSS),
∴∠DAC=∠CBD.
【点睛】
本题考查了全等三角形的判定和性质,解题的关键是根据题意灵活运用SSS的方法.
6.如图,在△ABC中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.
【分析】由“AAS”可证△ABC≌△AED,可得AE=AB,AC=AD,由线段的和差关系可得结论.
【解答】证明:∵ED⊥AB,
∴∠ADE=∠ACB=90°,∠A=∠A,BC=DE,
∴△ABC≌△AED(AAS),
∴AE=AB,AC=AD,
∴CE=BD.
7.如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.
【分析】证明△ABC≌△CDE(ASA),可得出结论.
【解答】证明:∵AB⊥BD,ED⊥BD,AC⊥CE,
∴∠ACE=∠ABC=∠CDE=90°,
∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,
∴∠ACB=∠CED.
在△ABC和△CDE中,
∠ACB=∠CEDBC=DE∠ABC=∠CDE,
∴△ABC≌△CDE(ASA),
∴AB=CD.
8.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.
【分析】要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD=AE.
【解答】证明:在△ABE与△ACD中
∠A=∠AAB=AC∠B=∠C,
∴△ABE≌△ACD.
∴AD=AE.
∴BD=CE.
9.如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.
【分析】首先利用平行线的性质得出∠ACB=∠DFE,进而利用全等三角形的判定定理ASA,进而得出答案.
【解答】证明:∵AC∥DF,
∴∠ACB=∠DFE,
∵BF=CE,
∴BC=EF,
在△ABC和△DEF中,∠B=∠EBC=EF∠ACB=∠DFE,
∴△ABC≌△DEF(ASA).
10.如图,AC平分∠BAD,AB=AD.求证:BC=DC.
【分析】由“SAS”可证△ABC≌△ADC,可得BC=DC.
【解答】证明:∵AC平分∠BAD,
∴∠BAC=∠DAC,
又∵AB=AD,AC=AC,
∴△ABC≌△ADC(SAS),
∴BC=CD.
11.如图,已知AB∥CD,AB=CD,BE=CF.
求证:
(1)△ABF≌△DCE;
(2)AF∥DE.
【分析】
(1)先由平行线的性质得∠B=∠C,从而利用SAS判定△ABF≌△DCE;
(2)根据全等三角形的性质得∠AFB=∠DEC,由等角的补角相等可得∠AFE=∠DEF,再由平行线的判定可得结论.
【解答】
证明:(1)∵AB∥CD,
∴∠B=∠C,
∵BE=CF,
∴BE﹣EF=CF﹣EF,
即BF=CE,
在△ABF和△DCE中,
∵AB=CD∠B=∠CBF=CE,
∴△ABF≌△DCE(SAS);
(2)∵△ABF≌△DCE,
∴∠AFB=∠DEC,
∴∠AFE=∠DEF,
∴AF∥DE.
12.如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.
(1)求证:AB=CD;
(2)若AB=CF,∠B=40°,求∠D的度数.
【分析】
(1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE≌△DCF,根据全等三角形的性质得出即可;
(2)根据全等得出AB=CD,BE=CF,∠B=∠C,求出CF=CD,推出∠D=∠CFD,即可求出答案.
【解答】
(1)证明:∵AB∥CD,
∴∠B=∠C,
在△ABE和△DCF中,
∠A=∠D∠B=∠CAE=DF,
∴△ABE≌△DCF(AAS),
∴AB=CD;
(2)解:∵△ABE≌△DCF,
∴AB=CD,BE=CF,∠B=∠C,
∵∠B=40°,
∴∠C=40°
∵AB=CF,
∴CF=CD,
∴∠D=∠CFD=12×(180°﹣40°)=70°.
13.已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.
【解析】∵AD=BE,
∴AD-BD=BE-BD,
∴AB=ED,
∵AC∥EF,
∴∠A=∠E,
在△ABC和△EDF中,,
∴△ABC≌△EDF(AAS),
∴BC=DF.
14.如图,AB=AD,BC=DC,点E在AC上.
(1)求证:AC平分∠BAD;
(2)求证:BE=DE.
【解析】
(1)在△ABC与△ADC中,
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC,
即AC平分∠BAD.
(2)由(1)∠BAE=∠DAE,
在△BAE与△DAE中,得,
∴△BAE≌△DAE(SAS),
∴BE=DE.
15.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.
(1)求证:△BDE≌△CDF;
(2)当AD⊥BC,AE=1,CF=2时,求AC的长.
【解析】
(1)∵,
∴,
∵是边上的中线,∴,
∴△BDE≌△CDF.
(2)∵△BDE≌△CDF,
∴,
∴.
∵,
∴.
16.如图,是的角平分线,在上取点,使.
(1)求证:.
(2)若,,求的度数.
【答案】(1)见解析;(2)35°
【分析】
(1)直接利用角平分线的定义和等边对等角求出,即可完成求证;
(2)先求出∠ADE,再利用平行线的性质求出∠ ABC,最后利用角平分线的定义即可完成求解.
【详解】
解:(1)平分,
.
,
,
,
.
(2),,
.
.
.
平分,
,
即.
【点睛】
本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.
17.如图,在中,,点D,E分別在边AB,AC上,,连结CD,BE.
(1)若,求,的度数.
(2)写出与之间的关系,并说明理由.
【答案】(1);;(2),见解析
【分析】
(1)利用三角形的内角和定理求出的大小,再利用等腰三角形的性质分别求出,.
(2)利用三角形的内角和定理、三角形外角的性质和等腰三角形的性质,求出用含分别表示,,即可得到两角的关系.
【详解】
(1),,
.
在中,,
,
,
,
.
.
(2),的关系:.
理由如下:设,.
在中,,
,
.
,
在中,,
.
.
.
.
【点睛】
本题主要通过求解角和两角之间的关系,考查三角形的内角和定理、三角形外角的性质和等腰三角形的性质.三角形的内角和等于 .三角形的外角等于与其不相邻的两个内角之和.等腰三角形等边对等角.
18.如图,已知,,与相交于点,求证:.
【答案】证明见解析
【分析】
根据全等三角形的性质,通过证明,得,结合等腰三角形的性质,即可得到答案.
【详解】
∵,
∴(AAS),
∴,
∴.
【点睛】
本题考查了全等三角形、等腰三角形的知识;解题的关键是熟练掌握全等三角形、等腰三角形的性质,从而完成求解.
题型五 圆的相关证明与计算 类型一 圆的基本性质证明与计算(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用): 这是一份题型五 圆的相关证明与计算 类型一 圆的基本性质证明与计算(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用),文件包含题型五圆的相关证明与计算类型一圆的基本性质证明与计算专题训练原卷版docx、题型五圆的相关证明与计算类型一圆的基本性质证明与计算专题训练解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
题型五 圆的相关证明与计算 类型二 与切线有关的证明与计算(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用): 这是一份题型五 圆的相关证明与计算 类型二 与切线有关的证明与计算(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用),文件包含题型五圆的相关证明与计算类型二与切线有关的证明与计算专题训练原卷版docx、题型五圆的相关证明与计算类型二与切线有关的证明与计算专题训练解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
题型四 多边形证明 类型二 特殊四边形证明(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用): 这是一份题型四 多边形证明 类型二 特殊四边形证明(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用),文件包含题型四多边形证明类型二特殊四边形证明专题训练原卷版docx、题型四多边形证明类型二特殊四边形证明专题训练解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。