所属成套资源:2024年高考数学二轮复习【举一反三】系列(新高考专用)
- 2024年高考数学二轮复习【举一反三】系列 重难点02 一元二次不等式恒成立、能成立问题【六大题型】- (新高考专用) 试卷 0 次下载
- 2024年高考数学二轮复习【举一反三】系列 重难点03 函数性质的灵活运用【八大题型】- (新高考专用) 试卷 0 次下载
- 2024年高考数学二轮复习【举一反三】系列 重难点05 导数常考经典压轴小题全归类【十大题型】- (新高考专用) 试卷 0 次下载
- 2024年高考数学二轮复习【举一反三】系列 重难点06 导数必考压轴解答题全归类【十一大题型】- (新高考专用) 试卷 0 次下载
- 2024年高考数学二轮复习【举一反三】系列 2024年高考数学全真模拟卷01-(新高考专用) 试卷 0 次下载
2024年高考数学二轮复习【举一反三】系列 重难点04 指、对、幂数比较大小问题【七大题型】- (新高考专用)
展开
这是一份2024年高考数学二轮复习【举一反三】系列 重难点04 指、对、幂数比较大小问题【七大题型】- (新高考专用),文件包含重难点04指对幂数比较大小问题七大题型举一反三新高考专用原卷版docx、重难点04指对幂数比较大小问题七大题型举一反三新高考专用解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
一、注意基础知识的整合、巩固。二轮复习要注意回归课本,课本是考试内容的载体,是高考命题的依据。浓缩课本知识,进一步夯实基础,提高解题的准确性和速度
二、查漏补缺,保强攻弱。在二轮复习中,对自己的薄弱环节要加强学习,平衡发展,加强各章节知识之间的横向联系,针对“一模”考试中的问题要很好的解决,根据自己的实际情况作出合理的安排。
三、提高运算能力,规范解答过程。在高考中运算占很大比例,一定要重视运算技巧粗中有细,提高运算准确性和速度,同时,要规范解答过程及书写。
四、强化数学思维,构建知识体系。同学们在听课时注意把重点要放到理解老师对问题思路的分析以及解法的归纳总结,以便于同学们在刷题时做到思路清晰,迅速准确。
五、解题快慢结合,改错反思。审题制定解题方案要慢,不要急于解题,要适当地选择好的方案,一旦方法选定,解题动作要快要自信。
六、重视和加强选择题的训练和研究。对于选择题不但要答案正确,还要优化解题过程,提高速度。灵活运用特值法、排除法、数形结合法、估算法等。
重难点04 指、对、幂数比较大小问题【七大题型】
【新高考专用】
TOC \ "1-3" \h \u
\l "_Tc7284" 【题型1 利用单调性比较大小】 PAGEREF _Tc7284 \h 2
\l "_Tc7466" 【题型2 中间值法比较大小】 PAGEREF _Tc7466 \h 4
\l "_Tc32065" 【题型3 作差法、作商法比较大小】 PAGEREF _Tc32065 \h 5
\l "_Tc11075" 【题型4 构造函数法比较大小】 PAGEREF _Tc11075 \h 7
\l "_Tc6042" 【题型5 数形结合比较大小】 PAGEREF _Tc6042 \h 8
\l "_Tc3056" 【题型6 含变量问题比较大小】 PAGEREF _Tc3056 \h 12
\l "_Tc28045" 【题型7 放缩法比较大小】 PAGEREF _Tc28045 \h 14
从近几年的高考情况来看,指、对、幂数的大小比较问题是高考重点考查的内容之一,是高考的热点问题,主要以选择题的形式考查,往往将幂函数、指数函数、对数函数、三角函数等混在一起,进行排序比较大小.这类问题的主要解法是利用函数的性质与图象来求解,解题时要学会灵活的构造函数.
【知识点1 指、对、幂数比较大小的一般方法】
1.单调性法:当两个数都是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较,具体情况如下:
①底数相同,指数不同时,如和,利用指数函数的单调性;
②指数相同,底数不同时,如和,利用幂函数单调性比较大小;
③底数相同,真数不同时,如和,利用指数函数单调性比较大小.
2.中间值法:当底数、指数、真数都不同时,要比较多个数的大小,就需要寻找中间变量0、1或者其它能判断大小关系的中间量,然后再各部分内再利用函数的性质比较大小,借助中间量进行大小关系的判定.
3.作差法、作商法:
(1)一般情况下,作差或者作商,可处理底数不一样的对数比大小;
(2)作差或作商的难点在于后续变形处理,注意此处的常见技巧与方法.
4.估算法:
(1)估算要比较大小的两个值所在的大致区间;
(2)可以对区间使用二分法(或利用指对转化)寻找合适的中间值,借助中间值比较大小.
5.构造函数法:
构造函数,观察总结“同构”规律,很多时候三个数比较大小,可能某一个数会被可以的隐藏了“同构”规律,所以可能优先从结构最接近的的两个数来寻找规律,灵活的构造函数来比较大小.
6、放缩法:
(1)对数,利用单调性,放缩底数,或者放缩真数;
(2)指数和幂函数结合来放缩;
(3)利用均值不等式的不等关系进行放缩.
【题型1 利用单调性比较大小】
【例1】(2023·陕西商洛·统考一模)已知a=0.91.1,b=lg1213,c=lg132,则( )
A.a>b>cB.a>c>b
C.c>a>bD.b>a>c
【解题思路】根据指数函数的单调性判断a的范围,根据对数的运算性质以及对数函数性质判断b,c的范围,即可得答案.
【解答过程】因为y=0.9x为R上的单调减函数,y=lg2x,y=lg3x为(0,+∞)上的单调增函数,
故0c,
故选:D.
【变式1-1】(2023·四川南充·模拟预测)已知a=2525,b=3525,c=lg252,则( )
A.a0 ,
所以 k(x) 在 (0,0.1] 上单调递增,可得 k(x)>k(0)>0 ,即 g′(x)>0 ,
所以 g(x) 在 (0,0.1] 上单调递增,可得 g(0.1)>g(0)=0 ,即 a−c>0 ,所以 a>c.
故 caB.b>a>cC.c>b>aD.c>a>b
【解题思路】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可.
【解答过程】令g(x)=−(x−1)2,则g(x)开口向下,对称轴为x=1,
因为62−1−1−32=6+32−42,而(6+3)2−42=9+62−16=62−7>0,
所以62−1−1−32=6+32−42>0,即62−1>1−32
由二次函数性质知g(62)
相关试卷
这是一份2024年高考数学二轮复习【举一反三】系列 重难点06 导数必考压轴解答题全归类【十一大题型】- (新高考专用),文件包含重难点06导数必考压轴解答题全归类十一大题型举一反三新高考专用原卷版docx、重难点06导数必考压轴解答题全归类十一大题型举一反三新高考专用解析版docx等2份试卷配套教学资源,其中试卷共94页, 欢迎下载使用。
这是一份2024年高考数学二轮复习【举一反三】系列 重难点03 函数性质的灵活运用【八大题型】- (新高考专用),文件包含重难点03函数性质的灵活运用八大题型举一反三新高考专用原卷版docx、重难点03函数性质的灵活运用八大题型举一反三新高考专用解析版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
这是一份2024年高考数学二轮复习【举一反三】系列 专题1.1 集合与常用逻辑用语【七大题型】- (新高考专用),文件包含专题11集合与常用逻辑用语七大题型举一反三新高考专用原卷版docx、专题11集合与常用逻辑用语七大题型举一反三新高考专用解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。