(课标全国版)高考数学第一轮复习讲练 第47讲 随机抽样与用样本估计总体(讲+练)原卷版+解析
展开1.利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为eq \f(1,3),则在整个抽样过程中,每个个体被抽到的概率为( )
A.eq \f(1,4) B.eq \f(1,3)
C.eq \f(5,14) D.eq \f(10,27)
2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )
A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差
C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数
3.2020年全球“新冠”疫情暴发,严重影响了人们的常态生活.某市据统计得到5月份居民消费的各类商品及服务价格环比(与4月份相比)变动情况如图:
则下列叙述不正确的是( )
A.八大消费价格环比呈现四涨四平
B.其他用品服务价格环比涨幅最大
C.生活用品及服务和医疗保健价格环比涨幅相同
D.5月份居民消费平均价格环比持平
4.某公司生产A,B,C三种不同型号的轿车,其产量之比为2∶3∶4,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n的样本,若样本中A种型号的轿车比B种型号的轿车少8辆,则n=( )
A.96 B.72
C.48 D.36
5.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )
A.甲的成绩的平均数小于乙的成绩的平均数
B.甲的成绩的中位数等于乙的成绩的中位数
C.甲的成绩的方差小于乙的成绩的方差
D.甲的成绩的极差小于乙的成绩的极差
6.在第二次高考模拟市统测结束后,某校高三年级一个班级为预估本班学生的高考成绩水平,登记了全班同学的卷面成绩.经查询得知班上所有同学的学业水平考试成绩22分加分均已取得,则学业水平考试加分22分前后相比,不变的数字特征是( )
A.平均数 B.方差
C.中位数 D.众数
7.为了改善市民的生活环境,某沿江城市决定对本市的1 000家中小型化工企业进行污染情况摸排,并把污染情况综合折算成标准分100分,如图为该市被调查的化工企业的污染情况标准分的频率分布直方图,根据该图可估计本市标准分不低于50分的企业数为( )
A.400 B.500
C.600 D.800
8.某校对高三年级1 600名男女学生的视力状况进行调查,现用分层抽样的方法抽取一个容量是200的样本,已知样本中女生比男生少10人,则该校高三年级的女生人数是________.
9.高三某宿舍共8人,在一次体检中测得其中7个人的体重分别为60,55,60,55,65,50,50(单位:千克),其中一人因故未测,已知该同学的体重在50~60千克之间,则此次体检中该宿舍成员体重的中位数为55的概率为________.
10.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47]内的个数为________.
【练提升】
1.要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次为( )
A.①随机抽样法,②系统抽样法
B.①分层抽样法,②随机抽样法
C.①系统抽样法,②分层抽样法
D.①②都用分层抽样法
2.一个总体中有600个个体,随机编号为001,002,…,600,利用系统抽样方法抽取容量为24的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为051~125之间抽得的编号为( )
A.056,080,104 B.054,078,102
C.054,079,104 D.056,081,106
3.对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35]上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )
A.0.09 B.0.20
C.0.25 D.0.45
4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A.0.5 B.0.6
C.0.7 D.0.8
5.如图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增长率小于10月7日成交量的增长率.则上述判断正确的个数为( )
A.0 B.1
C.2 D.3
6.Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的2020年1月至2020年11月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论不正确的是( )
A.月跑步里程最小值出现在2月
B.月跑步里程逐月增加
C.月跑步里程的中位数为5月份对应的里程数
D.1月至5月的月跑步里程相对于6月至11月波动性更小
7.已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________、________.
8.为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是________.
9.某校1 200名高三年级学生参加了一次数学测验(满分为100分),为了分析这次数学测验的成绩,从这1 200人的数学成绩中随机抽取200人的成绩绘制成如下的统计表,请根据表中提供的信息解决下列问题:
(1)求a,b,c的值;
(2)如果从这1 200名学生中随机抽取一人,试估计这名学生该次数学测验及格的概率P(注:60分及60分以上为及格);
(3)试估计这次数学测验的年级平均分.
10.为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,从两厂各随机选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:
(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;
(2)若轮胎的宽度在[194,196]内,则称这个轮胎是标准轮胎.试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个的轮胎相对更好.
成绩分组
频数
频率
平均分
[0,20)
3
0.015
16
[20,40)
a
b
32.1
[40,60)
25
0.125
55
[60,80)
c
0.5
74
[80,100]
62
0.31
88
第47讲 随机抽样与用样本估计总体
【练基础】
1.利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为eq \f(1,3),则在整个抽样过程中,每个个体被抽到的概率为( )
A.eq \f(1,4) B.eq \f(1,3)
C.eq \f(5,14) D.eq \f(10,27)
【答案】C
【解析】根据题意,eq \f(9,n-1)=eq \f(1,3),解得n=28.
故在整个抽样过程中每个个体被抽到的概率为eq \f(10,28)=eq \f(5,14).
2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )
A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差
C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数
【答案】B 【解析】统计问题中,衡量数据的稳定程度的指标为数据的方差或标准差.故选B.
3.2020年全球“新冠”疫情暴发,严重影响了人们的常态生活.某市据统计得到5月份居民消费的各类商品及服务价格环比(与4月份相比)变动情况如图:
则下列叙述不正确的是( )
A.八大消费价格环比呈现四涨四平
B.其他用品服务价格环比涨幅最大
C.生活用品及服务和医疗保健价格环比涨幅相同
D.5月份居民消费平均价格环比持平
【答案】D
【解析】对于A选项,由图可知,饮食烟酒、衣着、居住、交通和通信持平,生活用品及服务、教育文化娱乐、医疗保健、其他用品服务价格环比上涨,所以A选项叙述正确.对于B选项,由图可知,八大消费价格中,其他用品服务价格环比涨幅最大,所以B选项叙述正确.对于C选项,由图可知,生活用品及服务和医疗保健价格环比涨幅相同,所以C选项叙述正确.对于D选项,由于八大消费价格环比呈现四涨四平,所以5月份居民消费平均价格环比上涨,所以D选项叙述不正确.故选D.
4.某公司生产A,B,C三种不同型号的轿车,其产量之比为2∶3∶4,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n的样本,若样本中A种型号的轿车比B种型号的轿车少8辆,则n=( )
A.96 B.72
C.48 D.36
【答案】B
【解析】由题意得eq \f(3,9)n-eq \f(2,9)n=8,所以n=72.故选B.
5.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )
A.甲的成绩的平均数小于乙的成绩的平均数
B.甲的成绩的中位数等于乙的成绩的中位数
C.甲的成绩的方差小于乙的成绩的方差
D.甲的成绩的极差小于乙的成绩的极差
【答案】C
【解析】甲的平均数是eq \f(4+5+6+7+8,5)=6,中位数是6,极差是4,方差是eq \f(-22+-12+02+12+22,5)=2;乙的平均数是eq \f(5+5+5+6+9,5)=6,中位数是5,极差是4,方差是eq \f(-12+-12+-12+02+32,5)=eq \f(12,5),比较可得选项C正确.
6.在第二次高考模拟市统测结束后,某校高三年级一个班级为预估本班学生的高考成绩水平,登记了全班同学的卷面成绩.经查询得知班上所有同学的学业水平考试成绩22分加分均已取得,则学业水平考试加分22分前后相比,不变的数字特征是( )
A.平均数 B.方差
C.中位数 D.众数
【答案】B
【解析】学业水平考试加分22分前后相比,平均数、中位数、众数都在原来的基础上加上了22,而全班的成绩波动性未发生变化,即方差不变.
7.为了改善市民的生活环境,某沿江城市决定对本市的1 000家中小型化工企业进行污染情况摸排,并把污染情况综合折算成标准分100分,如图为该市被调查的化工企业的污染情况标准分的频率分布直方图,根据该图可估计本市标准分不低于50分的企业数为( )
A.400 B.500
C.600 D.800
【答案】B
【解析】根据频率分布直方图计算得50分以上的频率为1-(0.005×20+0.012 5×20+0.015×10)=0.50,所以本市标准分不低于50分的企业数为500.
8.某校对高三年级1 600名男女学生的视力状况进行调查,现用分层抽样的方法抽取一个容量是200的样本,已知样本中女生比男生少10人,则该校高三年级的女生人数是________.
【解析】设样本中女生有x人,则男生有x+10人,所以x+x+10=200,得x=95,设该校高三年级的女生有y人,则由分层抽样的定义可知eq \f(y,1 600)=eq \f(95,200),解得y=760.
【答案】760
9.高三某宿舍共8人,在一次体检中测得其中7个人的体重分别为60,55,60,55,65,50,50(单位:千克),其中一人因故未测,已知该同学的体重在50~60千克之间,则此次体检中该宿舍成员体重的中位数为55的概率为________.
【解析】将七个人的体重按顺序排列如下:50,50,55,55,60,60,65,若此次体检中该宿舍成员体重的中位数为55,只需未测体重的同学体重要小于等于55,
又该同学的体重在50~60千克之间,
所以此次体检中该宿舍成员体重的中位数为55的概率为P=eq \f(5,10)=eq \f(1,2).
【答案】eq \f(1,2)
10.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47]内的个数为________.
【解析】由题知[5.43,5.45)与[5.45,5.47]所对应的小矩形的高分别为6.25,5.00,所以[5.43,5.47]的频率为(6.25+5.00)×0.02=0.225,所以直径落在区间[5.43,5.47]内的个数为80×0.225=18.
【答案】18
【练提升】
1.要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次为( )
A.①随机抽样法,②系统抽样法
B.①分层抽样法,②随机抽样法
C.①系统抽样法,②分层抽样法
D.①②都用分层抽样法
【答案】B 【解析】∵社会购买力的某项指标,受到家庭收入的影响,而社区中各个家庭收入差别明显,①用分层抽样法;而从某中学的15名艺术特长生,要从中选出3人调查学习负担情况的调查中个体之间差别不大,且总体和样本容量较小,∴②用随机抽样法.
2.一个总体中有600个个体,随机编号为001,002,…,600,利用系统抽样方法抽取容量为24的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为051~125之间抽得的编号为( )
A.056,080,104 B.054,078,102
C.054,079,104 D.056,081,106
【答案】D 【解析】因为系统抽样的间隔为eq \f(600,24)=25,
所以编号为051~125之间抽得的编号为
006+2×25=056,006+3×25=081,006+4×25=106.
3.对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35]上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )
A.0.09 B.0.20
C.0.25 D.0.45
【答案】D 【解析】由图可知,二等品的概率为1-(0.02+0.06+0.03)×5=0.45.所以从该批产品中随机抽取1件,则其是二等品的概率为0.45.
4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A.0.5 B.0.6
C.0.7 D.0.8
【答案】C 【解析】设调查的100位学生中阅读过《西游记》的学生人数为x,则x+80-60=90,解得x=70,所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为eq \f(70,100)=0.7.
5.如图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增长率小于10月7日成交量的增长率.则上述判断正确的个数为( )
A.0 B.1
C.2 D.3
【答案】B 【解析】7天假期的楼房认购量按由小到大顺序为:91,100,105,107,112,223,276;
成交量按由小到大顺序为:8,13,16,26,32,38,166.
对于①,日成交量的中位数是26,故错误;
对于②,日平均成交量为:eq \f(8+13+16+26+32+38+166,7)≈42.7,有1天日成交量超过日平均成交量,故错误;
对于③,根据图形可得认购量与日期不是正相关,故错误;
对于④,10月7日认购量的增长率小于10月7日成交量的增长率,故正确.
6.Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的2020年1月至2020年11月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论不正确的是( )
A.月跑步里程最小值出现在2月
B.月跑步里程逐月增加
C.月跑步里程的中位数为5月份对应的里程数
D.1月至5月的月跑步里程相对于6月至11月波动性更小
【答案】B
【解析】由折线图可知,月跑步里程的最小值出现在2月,故A正确;月跑步里程不是逐月增加的,故B不正确;月跑步里程数从小到大排列分别是:2月,8月,3月,4月,1月,5月,7月,6月,11月,9月,10月对应的里程数,故5月份对应的里程数为中位数,故C正确;由图可知,1月至5月的月跑步里程相对于6月至11月波动性更小,变化比较平稳,故D正确.
7.已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________、________.
【解析】由题图甲可知学生总人数是10 000,样本容量为10 000×2%=200,抽取的高中生人数是2 000×2%=40,由题图乙可知高中生的近视率为50%,所以抽取的高中生的近视人数为40×50%=20.
【答案】200 20
8.为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是________.
【解析】设被抽查的美术生的人数为n,因为后2个小组的频率之和为(0.037 5+0.012 5)×5=0.25,所以前3个小组的频率之和为0.75.又前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,所以前3个小组的频数分别为5,15,25,所以n=eq \f(5+15+25,0.75)=60.
【答案】60
9.某校1 200名高三年级学生参加了一次数学测验(满分为100分),为了分析这次数学测验的成绩,从这1 200人的数学成绩中随机抽取200人的成绩绘制成如下的统计表,请根据表中提供的信息解决下列问题:
(1)求a,b,c的值;
(2)如果从这1 200名学生中随机抽取一人,试估计这名学生该次数学测验及格的概率P(注:60分及60分以上为及格);
(3)试估计这次数学测验的年级平均分.
【解析】(1)由题意可得,b=1-(0.015+0.125+0.5+0.31)=0.05,
a=200×0.05=10,c=200×0.5=100.
(2)根据已知,在抽出的200人的数学成绩中,及格的有162人.
∴P=eq \f(162,200)=eq \f(81,100)=0.81.
(3)这次数学测验样本的平均分为
eq \x\t(x)=eq \f(16×3+32.1×10+55×25+74×100+88×62,200)=73,
∴这次数学测验的年级平均分大约为73分.
10.为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,从两厂各随机选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:
(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;
(2)若轮胎的宽度在[194,196]内,则称这个轮胎是标准轮胎.试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个的轮胎相对更好.
【解析】(1)甲厂10个轮胎宽度的平均值:
eq \x\t(x)甲=eq \f(1,10)×(195+194+196+193+194+197+196+195+193+197)=195(mm),
乙厂10个轮胎宽度的平均值:
eq \x\t(x)乙=eq \f(1,10)×(195+196+193+192+195+194+195+192+195+193)=194(mm).
(2)甲厂10个轮胎中宽度在[194,196]内的数据为195,194,196,194,196,195,
平均数:eq \x\t(x)1=eq \f(1,6)×(195+194+196+194+196+195)=195,
方差:seq \\al(2,1)=eq \f(1,6)×[(195-195)2+(194-195)2+(196-195)2+(194-195)2+(196-195)2+(195-195)2]=eq \f(2,3),
乙厂10个轮胎中宽度在[194,196]内的数据为195,196,195,194,195,195,
平均数:eq \x\t(x)2=eq \f(1,6)×(195+196+195+194+195+195)=195,
方差:seq \\al(2,2)=eq \f(1,6)×[(195-195)2+(196-195)2+(195-195)2+(194-195)2+(195-195)2+(195-195)2]=eq \f(1,3),
∵两厂标准轮胎宽度的平均数相等,但乙厂的方差更小,
∴乙厂的轮胎相对更好.
成绩分组
频数
频率
平均分
[0,20)
3
0.015
16
[20,40)
a
b
32.1
[40,60)
25
0.125
55
[60,80)
c
0.5
74
[80,100]
62
0.31
88
(课标全国版)高考数学第一轮复习讲练 第38讲 直线与方程(讲+练)原卷版+解析: 这是一份(课标全国版)高考数学第一轮复习讲练 第38讲 直线与方程(讲+练)原卷版+解析,文件包含课标全国版高考数学第一轮复习讲练测第38讲直线与方程练原卷版+解析docx、课标全国版高考数学第一轮复习讲练测第38讲直线与方程讲原卷版+解析docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
(课标全国版)高考数学第一轮复习讲练测 第01讲 集合(讲+练)原卷版+解析: 这是一份(课标全国版)高考数学第一轮复习讲练测 第01讲 集合(讲+练)原卷版+解析,文件包含课标全国版高考数学第一轮复习讲练测第01讲集合练原卷版+解析docx、课标全国版高考数学第一轮复习讲练测第01讲集合讲原卷版+解析docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
(课标全国版)高考数学第一轮复习讲练测 第47讲 随机抽样与用样本估计总体(讲+练)原卷版+解析: 这是一份(课标全国版)高考数学第一轮复习讲练测 第47讲 随机抽样与用样本估计总体(讲+练)原卷版+解析,文件包含课标全国版高考数学第一轮复习讲练测第47讲随机抽样与用样本估计总体练原卷版+解析docx、课标全国版高考数学第一轮复习讲练测第47讲随机抽样与用样本估计总体讲原卷版+解析docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。