终身会员
搜索
    上传资料 赚现金
    备考2024届高考数学一轮复习好题精练第三章一元函数的导数及其应用突破3利用导数证明不等式命题点2将不等式转化为两个函数的最值进行比较
    立即下载
    加入资料篮
    备考2024届高考数学一轮复习好题精练第三章一元函数的导数及其应用突破3利用导数证明不等式命题点2将不等式转化为两个函数的最值进行比较01
    还剩1页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备考2024届高考数学一轮复习好题精练第三章一元函数的导数及其应用突破3利用导数证明不等式命题点2将不等式转化为两个函数的最值进行比较

    展开
    这是一份备考2024届高考数学一轮复习好题精练第三章一元函数的导数及其应用突破3利用导数证明不等式命题点2将不等式转化为两个函数的最值进行比较,共2页。

    解析 当a=1时,要证xf(x)<ex,即证x2+xlnx<ex,即证1+lnxx<exx2,x>0.
    令函数g(x)=1+lnxx,则g'(x)=1-lnxx2.
    令g'(x)>0,得x∈(0,e);令g'(x)<0,得x∈(e,+∞).
    所以g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
    所以g(x)max=g(e)=1+1e.
    令函数h(x)=exx2(x>0),则h'(x)=ex(x-2)x3.
    当x∈(0,2)时,h'(x)<0;当x∈(2,+∞)时,h'(x)>0.
    所以h(x)在(0,2)上单调递减,在(2,+∞)上单调递增,
    所以h(x)min=h(2)=e24.
    因为e24-(1+1e)>0,所以h(x)min>g(x)max,
    即1+lnxx<exx2,从而xf(x)<ex得证.
    方法技巧
    若直接求导比较复杂或无从下手时,可将待证不等式进行变形,构造两个函数,转化为两个函数的最值问题(或找到可以传递的中间量a),即将不等式转化为f(x)≥g(x)的形式,证明f(x)min≥g(x)max(或f(x)≥a≥g(x))即可.
    训练2 已知函数f(x)=alnx+a+1x+x(a∈R).
    (1)讨论f(x)的单调性;
    (2)若函数g(x)=1ex+1x,证明:当a=1时,f(x)>g(x).
    解析 (1)f(x)的定义域为(0,+∞),f'(x)=ax-a+1x2+1=x2+ax-(a+1)x2=[x+(a+1)](x-1)x2.
    当a≥-1时,a+1≥0,所以x+(a+1)>0恒成立,所以当x∈(0,1)时,f'(x)<0,
    当x∈(1,+∞)时,f'(x)>0,所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
    当a<-1时,分下面三种情况讨论.
    ①当a=-2时,f'(x)=(x-1)2x2≥0恒成立,所以f(x)在(0,+∞)上单调递增;
    ②当a<-2时,-a-1>1,令f'(x)>0,解得0<x<1或x>-a-1,令f'(x)<0,解得1<x<-a-1,
    所以f(x)在(0,1),(-a-1,+∞)上单调递增,在(1,-a-1)上单调递减;
    ③当-2<a<-1时,0<-a-1<1,令f'(x)>0,解得0<x<-a-1或x>1,令
    f'(x)<0,解得-a-1<x<1,
    所以f(x)在(0,-a-1),(1,+∞)上单调递增,在(-a-1,1)上单调递减.
    综上,当a<-2时,f(x)在(0,1),(-a-1,+∞)上单调递增,在(1,-a-1)上单调递减;当a=-2时,f(x)在(0,+∞)上单调递增;当-2<a<-1时,
    f(x)在(0,-a-1),(1,+∞)上单调递增,在(-a-1,1)上单调递减;当a≥-1时,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
    (2)当a=1时,要证f(x)>g(x)(x>0),即证ln x+2x+x>1ex+1x(x>0),即证xlnx+x2+1>xex(x>0).(不等式中既含指数式,又含对数式,若直接作差构造函数,求导分析比较困难,可以考虑指、对分离,构造双函数证明)
    设G(x)=xex(x>0),易知G(x)=xex在(0,1)上单调递增,在(1,+∞)上单调递减,
    所以G(x)max=G(1)=1e.
    设F(x)=xlnx+x2+1(x>0),则F'(x)=ln x+2x+1(x>0).
    因为函数F'(x)在(0,+∞)上单调递增,而F'(1e)=2e>0,F'(1e2)=-1+2e2<0,
    所以存在x0∈(1e2,1e),使得F'(x0)=0,且ln x0=-2x0-1,
    所以当x∈(0,x0)时,F'(x)<0,当x∈(x0,+∞)时,F'(x)>0,
    所以F(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增.
    所以F(x)min=F(x0)=x0ln x0+x02+1=x0(-2x0-1)+x02+1=-x02-x0+1.
    设H(x)=-x2-x+1,显然该函数在(1e2,1e)上单调递减,
    所以H(x0)>H(1e),即-x02-x0+1>-1e2-1e+1,
    而-1e2-1e+1>1e,所以-x02-x0+1>1e,即F(x)min=F(x0)>1e=G(x)max.
    故当x>0时,F(x)>G(x)恒成立,
    所以当a=1时,f(x)>g(x)成立,得证.
    相关试卷

    备考2024届高考数学一轮复习好题精练第三章一元函数的导数及其应用突破3利用导数证明不等式: 这是一份备考2024届高考数学一轮复习好题精练第三章一元函数的导数及其应用突破3利用导数证明不等式,共5页。

    备考2024届高考数学一轮复习好题精练第三章一元函数的导数及其应用突破2利用导数研究恒能成立问题命题点2等价转化求参数范围: 这是一份备考2024届高考数学一轮复习好题精练第三章一元函数的导数及其应用突破2利用导数研究恒能成立问题命题点2等价转化求参数范围,共2页。

    备考2024届高考数学一轮复习好题精练第三章一元函数的导数及其应用突破3利用导数证明不等式命题点1将不等式转化为函数的最值问题: 这是一份备考2024届高考数学一轮复习好题精练第三章一元函数的导数及其应用突破3利用导数证明不等式命题点1将不等式转化为函数的最值问题,共1页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        备考2024届高考数学一轮复习好题精练第三章一元函数的导数及其应用突破3利用导数证明不等式命题点2将不等式转化为两个函数的最值进行比较
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map