贵州省黔南2023-2024学年数学九年级第一学期期末考试试题含答案
展开
这是一份贵州省黔南2023-2024学年数学九年级第一学期期末考试试题含答案,共7页。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( )
A.B.C.D.
2.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为( )
A.0 B.-1 C.1 D.2
3.下列事件中,必然发生的是 ( )
A.某射击运动射击一次,命中靶心B.通常情况下,水加热到100℃时沸腾
C.掷一次骰子,向上的一面是6点D.抛一枚硬币,落地后正面朝上
4.在Rt△ABC中,∠C=90°,sinA=,则∠A的度数是( )
A.30°B.45°C.60°D.90°
5.已知四边形中,对角线,相交于点,且,则下列关于四边形的结论一定成立的是( )
A.四边形是正方形B.四边形是菱形
C.四边形是矩形D.
6.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为,则可列方程( )
A.B.C.
D.
7.三角形两边长分别是和,第三边长是一元二次方程的一个实数根,则该三角形的面积是( )
A.B.C.或D.或
8.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为( )
A.8.5B.7.5C.9.5D.8
9.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为,那么满足的方程是( )
A.B.
C.D.
10.如图,在平面直角坐标系中,点、在函数的图象上,过点分别作轴、轴的垂线,垂足为、;过点分别作轴、轴的垂线,垂足为、.交于点,随着的增大,四边形的面积( )
A.增大B.减小C.先减小后增大D.先增大后减小
11.若,则的值是( )
A.B.C.D.
12.若式子在实数范围内有意义,则的取值范围是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,一辆汽车沿着坡度为的斜坡向下行驶50米,则它距离地面的垂直高度下降了 米.
14.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB= .
15.将抛物线y=﹣x2﹣4x(﹣4≤x≤0)沿y轴折叠后得另一条抛物线,若直线y=x+b与这两条抛物线共有3个公共点,则b的取值范围为_____.
16.如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=_____度.
17.如图1是一种广场三联漫步机,其侧面示意图,如图2所示,其中,.
①点到地面的高度是__________.
②点到地面的高度是____________.
18.如图,在Rt△ABC中,∠C=90°,AC=6,AD∥BC,DE与AB交于点F,已知AD=4,DF=2EF,sin∠DAB=,则线段DE=_____.
三、解答题(共78分)
19.(8分)如图(1),某数学活动小组经探究发现:在⊙O中,直径AB与弦CD相交于点P,此时PA· PB=PC·PD
(1)如图(2),若AB与CD相交于圆外一点P, 上面的结论是否成立?请说明理由.
(2)如图(3),将PD绕点P逆时针旋转至与⊙O相切于点C, 直接写出PA、PB、PC之间的数量关系.
(3)如图(3),直接利用(2)的结论,求当 PC= ,PA=1时,阴影部分的面积.
20.(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.
(1)求一次函数,反比例函数的表达式;
(2)求证:点C为线段AP的中点;
(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形.如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.
21.(8分)交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量(辆小时)指单位时间内通过道路指定断面的车辆数;速度(千米小时)指通过道路指定断面的车辆速度,密度(辆千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量与速度之间关系的部分数据如下表:
(1)根据上表信息,下列三个函数关系式中,刻画,关系最准确是_____________________.(只填上正确答案的序号)
①;②;③
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?
(3)已知,,满足,请结合(1)中选取的函数关系式继续解决下列问题:市交通运行监控平台显示,当时道路出现轻度拥堵.试分析当车流密度在什么范围时,该路段将出现轻度拥堵?
22.(10分)九年级1班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.
(1)男生当选班长的概率是 ;
(2)请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率.
23.(10分)新能源汽车已逐渐成为人们的交通工具,据某市某品牌新能源汽车经销商1至3月份统计,该品牌新能源汽车1月份销售150辆,3月份销售216辆.
(1)求该品牌新能源汽车销售量的月均增长率;
(2)若该品牌新能源汽车的进价为6.3万元/辆,售价为6.8万元/辆,则该经销商1至3月份共盈利多少万元?
24.(10分)如图,在矩形ABCD中,已知AD>AB.在边AD上取点E,连结CE.过点E作EF⊥CE,与边AB的延长线交于点F.
(1)求证:△AEF∽△DCE.
(2)若AB=3,AE=4,DE=6,求线段BF的长.
25.(12分)某体育老师统计了七年级甲、乙两个班女生的身高,并绘制了以下不完整的统计图.
请根据图中信息,解决下列问题:
(1)两个班共有女生多少人?
(2)将频数分布直方图补充完整;
(3)求扇形统计图中部分所对应的扇形圆心角度数;
(4)身高在的5人中,甲班有3人,乙班有2人,现从中随机抽取两人补充到学校国旗队.请用列表法或画树状图法,求这两人来自同一班级的概率.
26.(12分)有一个人患了流感,经过两轮传染后共有196个人患了流感,每轮传染中平均一个人传染了几个人?
参考答案
一、选择题(每题4分,共48分)
1、A
2、A
3、B
4、C
5、C
6、D
7、D
8、A
9、B
10、A
11、B
12、C
二、填空题(每题4分,共24分)
13、25
14、4
15、0<b<
16、1
17、
18、2
三、解答题(共78分)
19、(1)成立,理由见解析;(2);(3)
20、(1)y=x+1;y=(2)证明见解析;(3)存在,D(8,1).
21、(1)答案为③;(2)v=30时,q达到最大值,q的最大值为1;(3)84<k≤2
22、(1)(2)
23、(1)品牌新能源汽车月均增长率为20%;(2)经销商1至3月份共盈利273万元.
24、(1)见解析;(2)1
25、(1)50;(2)详见解析;(3);(4)
26、每轮传染中平均一个人传染了13个人.
速度v(千米/小时)
流量q(辆/小时)
相关试卷
这是一份贵州省黔南长顺县2023-2024学年数学九年级第一学期期末调研试题含答案,共8页。试卷主要包含了已知,则=,下列事件中必然发生的事件是,抛物线y=2等内容,欢迎下载使用。
这是一份贵州省黔南2023-2024学年九年级数学第一学期期末考试试题含答案,共7页。
这是一份2023-2024学年贵州省黔南州长顺县九上数学期末考试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。