湖南省张家界市2023-2024学年九年级数学第一学期期末综合测试试题含答案
展开
这是一份湖南省张家界市2023-2024学年九年级数学第一学期期末综合测试试题含答案,共8页。试卷主要包含了二次函数y=ax2+bx+c,下列图形中,中心对称图形有等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.下列一元二次方程中,有两个不相等实数根的是( )
A.x2+6x+9=0B.x2=xC.x2+3=2xD.(x﹣1)2+1=0
2.如果将抛物线平移,使平移后的抛物线与抛物线重合,那么它平移的过程可以是( )
A.向右平移4个单位,向上平移11个单位
B.向左平移4个单位,向上平移11个单位
C.向左平移4个单位,向上平移5个单位
D.向右平移4个单位,向下平移5个单位.
3.在Rt△ABC中,∠C=90°,∠A=α,AC=3,则AB的长可以表示为( )
A. B. C.3sinαD.3csα
4.已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于( )
A.二、三象限B.一、三象限C.三、四象限D.二、四象限
5.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为( )
A.B.2C.5D.10
6.下列图形中既是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
7.二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为( )
A.B.C.D.
8.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是( )
A.B.C.D.
9. “割圆术”是我国古代的一位伟大的数学家刘徽首创的,该割圆术,就是通过不断倍增圆内接正多边形的边数来求出圆周率的一种方法,某同学在学习“割圆术”的过程中,画了一个如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为( ).
A.1B.3C.3.1D.3.14
10.下列图形中,中心对称图形有( )
A.4个B.3个C.2个D.1个
11.如图,已知,M,N分别为锐角∠AOB的边OA,OB上的点,ON=6,把△OMN沿MN折叠,点O落在点C处,MC与OB交于点P,若MN=MP=5,则PN=( )
A.2B.3C.D.
12.如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若,则图中阴影部分的面积是( )
A.6πB.12πC.18πD.24π
二、填空题(每题4分,共24分)
13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于________.
14.如图,ΔABP是由ΔACD按顺时针方向旋转某一角度得到的,若∠BAP=60°,则在这一旋转过程中,旋转中心是____________,旋转角度为____________.
15.在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是_____.
16.一个多边形的内角和为900°,这个多边形的边数是____.
17.某一时刻身高160cm的小王在太阳光下的影长为80cm,此时他身旁的旗杆影长10m,则旗杆高为______.
18.年月日我国自主研发的大型飞机成功首飞,如图给出了一种机翼的示意图,其中,,则的长为_______.
三、解答题(共78分)
19.(8分)某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元,求该企业从2015年到2017年利润的年平均增长率.
20.(8分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.
(1)求证:∠E=∠C;
(2)如图2,如果AE=AB,且BD:DE=2:3,求cs∠ABC的值;
(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数.
21.(8分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在轴,轴的正半轴上.函数的图象与CB交于点D,函数(为常数,)的图象经过点D,与AB交于点E,与函数的图象在第三象限内交于点F,连接AF、EF.
(1)求函数的表达式,并直接写出E、F两点的坐标.
(2)求△AEF的面积.
22.(10分)如图,顶点为P(2,﹣4)的二次函数y=ax2+bx+c的图象经过原点,点A(m,n)在该函数图象上,连接AP、OP.
(1)求二次函数y=ax2+bx+c的表达式;
(2)若∠APO=90°,求点A的坐标;
(3)若点A关于抛物线的对称轴的对称点为C,点A关于y轴的对称点为D,设抛物线与x轴的另一交点为B,请解答下列问题:
①当m≠4时,试判断四边形OBCD的形状并说明理由;
②当n<0时,若四边形OBCD的面积为12,求点A的坐标.
23.(10分)关于x的一元二次方程(k+1)x2﹣3x﹣3k﹣2=0有一个根为﹣1,求k的值及方程的另一个根.
24.(10分)如图,直线y=x+2与抛物线y=ax2+bx+6相交于A(,)和B(4,m),直线AB交x轴于点E,点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式.
(2)连结AC、BC,是否存在一点P,使△ABC的面积等于14?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)若△PAC与△PDE相似,求点P的坐标.
25.(12分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2).(正方形网格中每个小正方形的边长是一个单位长度),
(1)在正方形网格中画出△ABC绕点O顺时针旋转90°得到△A1B1C1.
(2)求出线段OA旋转过程中所扫过的面积(结果保留π).
26.(12分)已知:如图,点P是一个反比例函数的图象与正比例函数y=﹣2x的图象的公共点,PQ垂直于x轴,垂足Q的坐标为(2,0).
(1)求这个反比例函数的解析式;
(2)如果点M在这个反比例函数的图象上,且△MPQ的面积为6,求点M的坐标.
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、A
4、D
5、C
6、B
7、D
8、C
9、B
10、B
11、D
12、A
二、填空题(每题4分,共24分)
13、
14、,
15、
16、1
17、20m
18、
三、解答题(共78分)
19、该企业从2015年到2017年利润的年平均增长率为20%
20、(1)证明见详解;(2);(3)30°或45°.
21、(1),E(2,1),F(-1,-2);(2).
22、(1)y=x2﹣4x;(2)A(,﹣);(3)①平行四边形,理由见解析;②A(1,﹣3)或A(3,﹣3).
23、k=1,x=
24、 (1)y=2x2﹣8x+6;(2)不存在一点P,使△ABC的面积等于14;(3)点P的坐标为(3,5)或(,).
25、(1)见解析;(2)
26、(1)y=﹣;(2)M(5,﹣)或(﹣1,8).
相关试卷
这是一份湖南省张家界市桑植县2023-2024学年九年级上学期期末数学试题(含答案),共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份湖南省张家界市慈利县2023-2024学年九年级数学第一学期期末统考试题含答案,共8页。试卷主要包含了下列事件是必然事件的是等内容,欢迎下载使用。
这是一份2023-2024学年湖南省张家界市名校九年级数学第一学期期末检测试题含答案,共8页。试卷主要包含了点P,中,,若,,则的长为等内容,欢迎下载使用。