湖南省张家界市慈利县2023-2024学年九年级数学第一学期期末统考试题含答案
展开
这是一份湖南省张家界市慈利县2023-2024学年九年级数学第一学期期末统考试题含答案,共8页。试卷主要包含了下列事件是必然事件的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.在正方形ABCD中,AB=3,点E在边CD上,且DE=1,将△ADE沿AE对折到△AFE,延长EF交边BC于点G,连接AG,CF.下列结论,其中正确的有( )个.
(1)CG=FG;(2)∠EAG=45°;(3)S△EFC=;(4)CF=GE
A.1B.2C.3D.4
2.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为6,则k1﹣k2的值为( )
A.12B.﹣12C.6D.﹣6
3.如果点A(﹣5,y1),B(﹣,y2),C(,y3),在双曲线y=上(k<0),则y1,y2,y3的大小关系是( )
A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y1<y3<y2
4.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于( )
A.B.C.D.
5.下列事件是必然事件的是( )
A.抛掷一枚硬币四次,有两次正面朝上
B.打开电视频道,正在播放《在线体育》
C.射击运动员射击一次,命中十环
D.方程x2﹣2x﹣1=0必有实数根
6.关于二次函数y=2x2+4,下列说法错误的是( )
A.它的开口方向向上B.当x=0时,y有最大值4
C.它的对称轴是y轴D.顶点坐标为(0,4)
7.已知抛物线y=﹣x2+bx+4经过(﹣2,﹣4),则b的值为( )
A.﹣2B.﹣4C.2D.4
8.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是( ).
A.B.C.D.1<x<2
9.如图是一根空心方管,则它的主视图是( )
A.B.C.D.
10.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是( )
A.B.C.D.
11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).
其中正确的结论有( )
A.2个B.3个C.4个D.5个
12.若点A(1,y1),B(2,y2),C(﹣2,y3)都在反比例函数y=(k>0)的图象上,则y1,y2,y3的大小关系是( )
A.<< B.<< C. << D. <<
二、填空题(每题4分,共24分)
13.已知两个数的差等于2,积等于15,则这两个数中较大的是 .
14.如图,点A是反比例函数y=(x>0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是______.
15.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了_____度.
16.已知cs( a-15°)=,那么a=____________
17.太原市某学校门口的栏杆如图所示,栏杆从水平位置绕定点旋转到位置,已知栏杆的长为的长为点到的距离为.支柱的高为,则栏杆端离地面的距离为__________.
18.如图,AB是半圆O的直径,D是半圆O上一点,C是的中点,连结AC交BD于点E,连结AD,若BE=4DE,CE=6,则AB的长为_____.
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.
(1)求二次函数y=ax2+bx+c的表达式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.
20.(8分)已知二次函数.
用配方法求该二次函数图象的顶点坐标;
在所给坐标系中画出该二次函数的图象,并直接写出当时自变量的取值范围.
21.(8分)如图,△ABC.
(1)尺规作图:
①作出底边的中线AD;
②在AB上取点E,使BE=BD;
(2)在(1)的基础上,若AB=AC,∠BAC=120°,求∠ADE的度数.
22.(10分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处回合,如图所示,以水平方向为轴,喷水池中心为原点建立平面直角坐标系.
(1)求水柱所在抛物线(第一象限部分)的函数表达式;
(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?
23.(10分)如图,已知均在上,请用无刻度的直尺作图.
如图1,若点是的中点,试画出的平分线;
如图2,若.试画出的平分线.
24.(10分)已知:如图,Rt△ABC中,∠ACB=90°,sinB=,点D、E分别在边AB、BC上,且AD∶DB=2∶3,DE⊥BC.
(1)求∠DCE的正切值;
(2)如果设,,试用、表示.
25.(12分)如图,在中,于点.若,求的值.
26.(12分)若关于x的方程有两个相等的实数根
(1)求b的值;
(2)当b取正数时,求此时方程的根,
参考答案
一、选择题(每题4分,共48分)
1、C
2、A
3、A
4、A
5、D
6、B
7、C
8、C
9、B
10、A
11、A
12、D
二、填空题(每题4分,共24分)
13、5
14、1﹣1.
15、
16、45°
17、
18、4
三、解答题(共78分)
19、(1)y=﹣x2+4x+5;(2)点P(,)时,S四边形APCD最大=;(3)当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3).
20、(1)顶点坐标为;(2)图象见解析,由图象得当时.
21、(1)①详见解析;②详见解析;(2)15°.
22、(1);(2)王师傅必须在7米以内.
23、见解析; 见解析
24、(1);(2).
25、
26、(1)b=2或b=;(2)x1=x2=2;
相关试卷
这是一份湖南省张家界市民族中学2023-2024学年数学九上期末统考模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列约分正确的是,如图,点P等内容,欢迎下载使用。
这是一份湖南省张家界市桑植县2023-2024学年数学八上期末统考模拟试题含答案,共7页。试卷主要包含了下列各组条件中能判定的是,下列说法错误的是,下列图形是轴对称图形的是等内容,欢迎下载使用。
这是一份湖南省张家界市慈利县2023-2024学年八上数学期末达标测试试题含答案,共7页。试卷主要包含了定义运算“⊙”,下列式子为最简二次根式的是,四个长宽分别为,的小长方形等内容,欢迎下载使用。