湖南省益阳市赫山区2023-2024学年九上数学期末监测模拟试题含答案
展开这是一份湖南省益阳市赫山区2023-2024学年九上数学期末监测模拟试题含答案,共7页。试卷主要包含了如果双曲线y=经过点等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如果关于的方程是一元二次方程,那么的值为:( )
A.B.C.D.都不是
2.如图,四边形ABCD是正方形,延长BC到E,使,连接AE交CD于点F,则( )
A.67.5°B.65°C.55°D.45°
3.若将半径为的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( )
A.B.C.D.
4.在△ABC中,∠C=90°,则下列等式成立的是( )
A.sinA=B.sinA=C.sinA=D.sinA=
5.如图,在的正方形网格中,有三个小正方形已经涂成灰色,若再任意涂灰2个白色小正方形(每个白色小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是( )
A.B.C.D.
6.如果双曲线y=经过点(3、﹣4),则它也经过点( )
A.(4、3)B.(﹣3、4)C.(﹣3、﹣4)D.(2、6)
7.已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为( )
A.点M在⊙C上B.点M在⊙C内C.点M在⊙C外D.点M不在⊙C内
8.若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为( )
A.144°B.132°C.126°D.108°
9.关于反比例函数,下列说法正确的是( )
A.点在它的图象上B.它的图象经过原点
C.当时,y随x的增大而增大D.它的图象位于第一、三象限
10.对于反比例函数y=,下列说法正确的是( )
A.图象经过点(1,﹣1)B.图象关于y轴对称
C.图象位于第二、四象限D.当x<0时,y随x的增大而减小
11.若二次函数的x与y的部分对应值如下表,则当时,y的值为
A.5B.C.D.
12.一元二次方程3x2=8x化成一般形式后,其中二次项系数和一次项系数分别是( )
A.3,8B.3,0C.3,-8D.-3,-8
二、填空题(每题4分,共24分)
13.某公园平面图上有一条长12cm的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.
14.如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,A,D两点分别在反比例函数y=﹣(x<0)与y=(x>0)的图象上,若▱ABCD的面积为4,则k的值为:_____.
15.在△ABC中,分别以AB,AC为斜边作Rt△ABD和Rt△ACE,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,连接DE.若DE=5,则BC长为_____.
16.如图,的直径垂直弦于点,且,,则弦__________.
17.如图,在△ABC中,∠ACB=90°,点G是△ABC的重心,且AG⊥CG,CG的延长线交AB于H.则S△AGH:S△ABC 的值为 ____.
18.已知,=________.
三、解答题(共78分)
19.(8分)如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).
(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C有怎样的位置关系,并给出证明.
20.(8分)在一次社会大课堂的数学实践活动中,王老师要求同学们测量教室窗户边框上的点C到地面的距离即CD的长,小英测量的步骤及测量的数据如下:
(1)在地面上选定点A, B,使点A,B,D在同一条直线上,测量出、两点间的距离为9米;
(2)在教室窗户边框上的点C点处,分别测得点,的俯角∠ECA=35°,∠ECB=45°.请你根据以上数据计算出的长.
(可能用到的参考数据:sin35°≈0.57 cs35°≈0.82 tan35°≈0.70)
21.(8分)如图,在△ABC中,DE∥BC,,M为BC上一点,AM交DE于N.
(1)若AE=4,求EC的长;
(2)若M为BC的中点,S△ABC=36,求S△ADN的值.
22.(10分)如图,在△ABC中,AB=AC.
(1)若以点A为圆心的圆与边BC相切于点D,请在下图中作出点D;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)的条件下,若该圆与边AC相交于点E,连接DE,当∠BAC=100°时,求∠AED的度数.
23.(10分)如图,有一座圆弧形拱桥,它的跨度为,拱高为,当洪水泛滥到跨度只有时,就要采取紧急措施,若某次洪水中,拱顶离水面只有,即时,试通过计算说明是否需要采取紧急措施.
24.(10分)如图,等腰Rt△BPQ的顶点P在正方形ABCD的对角线AC上(P与AC不重合),∠PBQ=90°,QP与BC交于E,QP延长线交AD于F,连CQ.
(1)①求证:AP=CQ ;
②求证:
(2)当时,求的值.
25.(12分)某中学举行“中国梦,我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.
(1)参加比赛的学生共有 名,在扇形统计图中,表示“D等级”的扇形的圆心角为 度,图中m的值为 ;
(2)补全条形统计图;
(3)组委会决定分别从本次比赛中获利A、B两个等级的学生中,各选出1名学生培训后搭档去参加市中学生演讲比赛,已知甲的等级为A,乙的等级为B,求同时选中甲和乙的概率.
26.(12分)倡导全民阅读,建设书香社会.
(调查)目前,某地纸媒体阅读率为40%,电子媒体阅读率为80%,综合媒体阅读率为90%.
(百度百科)某种媒体阅读率,指有某种媒体阅读行为人数占人口总数的百分比;综合阅读率,在纸媒体和电子体中,至少有一种阅读行为的人数占人口总数的百分比,它反映了一个国家或地区的阅读水平.
(问题解决)(1)求该地目前只有电子媒体阅读行为人数占人口总数的百分比;
(2)国家倡导全民阅读,建设书香社会.预计未来两个五年中,若该地每五年纸媒体阅读人数按百分数x减少,综合阅读人数按百分数x增加,这样十年后,只读电子媒体的人数比目前增加53%,求百分数x.
参考答案
一、选择题(每题4分,共48分)
1、C
2、A
3、C
4、B
5、C
6、B
7、A
8、A
9、D
10、D
11、D
12、C
二、填空题(每题4分,共24分)
13、240m
14、2
15、1
16、
17、1:6
18、
三、解答题(共78分)
19、(1);(2)相交,证明见解析
20、CD的长为21米
21、(1)2(2)8
22、(1)详见解析;(2)65°.
23、不需要采取紧急措施,理由详见解析.
24、(1)①证明见解析;②证明见解析;(2)
25、(1)20,72,1;(2)见解析;(3)
26、(1)该社区有电子媒体阅读行为人数占人口总数的百分比为50%.(2)x为10%.
x
y
3
5
3
相关试卷
这是一份湖南省益阳市赫山区2023-2024学年九上数学期末综合测试试题含答案,共8页。试卷主要包含了答题时请按要求用笔,P关于原点对称的点的坐标是等内容,欢迎下载使用。
这是一份2023-2024学年湖南省益阳市赫山区赫山万源中学数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,定义,关于的一元二次方程的根的情况是,下列事件中,属于不确定事件的有,在中,,,,那么的值等于等内容,欢迎下载使用。
这是一份2023-2024学年湖南省益阳市名校八上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了若关于的方程的解为,则等于,下列运算正确的是,若分式方程有增根, 则的值是等内容,欢迎下载使用。