湖南省娄底新化县联考2023-2024学年九上数学期末统考试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.若关于x的方程(m﹣1)x2+mx﹣1=0是一元二次方程,则m的取值范围是( )
A.m≠1B.m=1C.m≥1D.m≠0
2.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球( )
A.12个B.16个C.20个D.25个
3.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )
A.4B.6.25C.7.5D.9
4.在中,,,,那么的值等于( )
A.B.C.D.
5.(2017广东省卷)如图,在同一平面直角坐标系中,直线与双曲线相交于两点,已知点的坐标为,则点的坐标为( )
A.B.C.D.
6.如图,AD是△ABC的中线,点E在AD上,AD=4DE,连接BE并延长交AC于点F,则AF:FC的值是( )
A.3:2B.4:3C.2:1D.2:3
7.若将抛物线y=x2平移,得到新抛物线,则下列平移方法中,正确的是( )
A.向左平移3个单位B.向右平移3个单位
C.向上平移3个单位D.向下平移3个单位
8.若整数a使关于x的分式方程=2有整数解,且使关于x的不等式组至少有4个整数解,则满足条件的所有整数a的和是( )
A.﹣14B.﹣17C.﹣20D.﹣23
9.目前,支付宝平台入驻了不少的理财公司,推出了一些理财产品.李阿姨用10000元本金购买了一款理财产品,到期后自动续期,两期结束后共收回本息10926元设此款理财产品每期的平均收益率为x,则根据题意可得方程( )
A.B.
C.D.
10.已知2x=5y(y≠0),则下列比例式成立的是( )
A.B.C.D.
11.如图,一同学在湖边看到一棵树,他目测出自己与树的距离为20m,树的顶端在水中的倒影距自己5m 远,该同学的身高为1.7m ,则树高为( ).
A.3.4mB.4.7 mC.5.1mD.6.8m
12.已知,则下列比例式成立的是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=32°.则∠ABD=_____
14.计算________________.
15.若抛物线的顶点在坐标轴上,则b的值为________.
16.已知二次函数y=x2﹣5x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为_____.
17.一男生推铅球,铅球行进高度y与水平距离x之间的关系是,则铅球推出的距离是_____.此时铅球行进高度是_____.
18.如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y=(k>0,x>0)的图象上,若△OAB的面积为,则k的值为_____.
三、解答题(共78分)
19.(8分)作图题:⊙O上有三个点A,B,C,∠BAC=70°,请画出要求的角,并标注.
(1)画一个140°的圆心角;(2)画一个110°的圆周角;(3)画一个20°的圆周角.
20.(8分)已知:如图,在Rt△ABC中,∠ACB=90°,BC="3" ,tan∠BAC=,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系
(1)求过A、B、O三点的抛物线解析式;
(2)若在线段AB上有一动点P,过P点作x轴的垂线,交抛物线于M,设PM的长度等于d,试探究d有无最大值,如果有,请求出最大值,如果没有,请说明理由.
(3)若在抛物线上有一点E,在对称轴上有一点F,且以O、A、E、F为顶点的四边形为平行四边形,试求出点E的坐标.
21.(8分)一只不透明的袋子中装有个质地、大小均相同的小球,这些小球分别标有数字,甲、乙两人每次同时从袋中各随机摸出个球,并计算摸出的这个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表
解答下列问题:
如果实验继续进行下去,根据上表数据,出现“和为”的频率将稳定在它的概率附近.估计出现“和为”的概率是_______;
如果摸出的这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表法或画树状图法说明理由;如果的值不可以取,请写出一个符合要求的值.
22.(10分)如图,一次函数y1=x+4的图象与反比例函数y2=的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求k.
(2)根据图象直接写出y1>y2时,x的取值范围.
(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,求k的取值.
23.(10分)垃圾分类是必须要落实的国家政策,环卫部门要求垃圾要按可回收物,有害垃圾,餐厨垃圾,其它垃圾四类分别装袋,投放.甲投放了一袋垃圾,乙投放了两袋垃圾(两袋垃圾不同类).
(1)直接写出甲投放的垃圾恰好是类垃圾的概率;
(2)用树状图求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
24.(10分)先化简,再求值:,其中x是方程的根.
25.(12分)先化简,再求值:,其中a=3,b=﹣1.
26.(12分)如图,四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=30°,将AC绕着点A顺时针旋转60°得AE,连接BE,CE.
(1)求证:△ADC≌△ABE;
(2)求证:
(3)若AB=2,点Q在四边形ABCD内部运动,且满足,直接写出点Q运动路径的长度.
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、A
4、A
5、A
6、A
7、A
8、A
9、B
10、B
11、C
12、C
二、填空题(每题4分,共24分)
13、58°
14、
15、±1或0
16、(4,0).
17、1 2
18、1
三、解答题(共78分)
19、 (1)见解析;(2)见解析;(3)见解析
20、(1)y=;(2)当t=时,d有最大值,最大值为2;(3)在抛物线上存在三个点:E1(,-),E2(,),E3(-,),使以O、A、E、F为顶点的四边形为平行四边形.
21、(1);(2)的值可以为其中一个.
22、(1)-3;(2)﹣3<x<﹣1;(3)k≥﹣4且k≠1.
23、 (1) ; (2)乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.
24、见解析
25、,.
26、(1)证明见解析;(2)证明见解析;(3).
摸球总次数
“和为”出现的频数
“和为”出现的频率
湖南省娄底市新化县2023-2024学年九年级上学期期末数学试题(含答案): 这是一份湖南省娄底市新化县2023-2024学年九年级上学期期末数学试题(含答案),共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
湖南省娄底市新化县2023-2024学年九年级上学期期末数学试题: 这是一份湖南省娄底市新化县2023-2024学年九年级上学期期末数学试题,共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
湖南省娄底娄星区四校联考2023-2024学年九上数学期末监测模拟试题含答案: 这是一份湖南省娄底娄星区四校联考2023-2024学年九上数学期末监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若不等式组无解,则的取值范围为等内容,欢迎下载使用。