海南省东方市八所中学2023-2024学年数学九上期末复习检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.下列关系式中,y是x的反比例函数的是( )
A.y=4xB.C.D.
2.如图,网格中的两个三角形是位似图形,它们的位似中心是( )
A.点AB.点BC.点CD.点D
3.下列一元二次方程中,有两个不相等的实数根的方程是( )
A.B.C.D.
4.在直角坐标系中,点关于坐标原点的对称点的坐标为( )
A.B. C.D.
5.若x1,x2是一元二次方程5x2+x﹣5=0的两根,则x1+x2的值是( )
A.B.C.1D.﹣1
6.如图,AE是四边形ABCD外接圆⊙O的直径,AD=CD,∠B=50°,则∠DAE的度数为( )
A.70°B.65°C.60°D.55°
7.已知二次函数y=ax2+bx+c的图象大致如图所示,则下列关系式中成立的是( )
A.a>0B.b<0C.c<0D.b+2a>0
8.下列式子中表示是关于的反比例函数的是( )
A.B.C.D.
9.下列各数中是无理数的是( )
A.0B.C.D.0.5
10. “汽车行驶到有交通信号灯的路口时,前方恰好遇到绿灯”,这个事件是( )
A.确定事件B.随机事件C.不可能事件D.必然事件
11.二次函数的图象如图,有下列结论:①,②,③时,,④,⑤当且时,,⑥当时,.其中正确的有( )
A.①②③B.②④⑥C. ②⑤⑥D.②③⑤
12.如图,一艘快艇从O港出发,向东北方向行驶到A处,然后向西行驶到B处,再向东南方向行驶,共经过1小时到O港,已知快艇的速度是60km/h,则A,B之间的距离是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.某游乐场新推出一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB自由上下选择项目难度,其中斜坡轨道BC的坡度为,BC=米,CD=8米,∠D=36°,(其中A,B,C,D均在同一平面内)则垂直升降电梯AB的高度约为__________米.(精确到0.1米,参考数据:)
14.如下图,圆柱形排水管水平放置,已知截面中有水部分最深为,排水管的截面半径为,则水面宽是__________.
15.若二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).则S=a+b+c的值的变化范围是_____.
16.如图,现有测试距离为5m的一张视力表,表上一个E的高AB为2cm,要制作测试距离为3m的视力表,其对应位置的E的高CD为____cm.
17.如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变长了_____m.
18.二次函数y=-2x2+3的开口方向是_________.
三、解答题(共78分)
19.(8分)如图,在矩形中,点为原点,点的坐标为,点的坐标为,抛物线经过点、,与交于点.
备用图
⑴求抛物线的函数解析式;
⑵点为线段上一个动点(不与点重合),点为线段上一个动点,,连接,设,的面积为.求关于的函数表达式;
⑶抛物线的顶点为,对称轴为直线,当最大时,在直线上,是否存在点,使以、、、为顶点的四边形是平行四边形,若存在,请写出符合条件的点的坐标;若不存在,请说明理由.
20.(8分)如图,AB是⊙O的直径,C是⊙O上一点,且AC=2,∠CAB=30°,求图中阴影部分面积.
21.(8分)如图,在一笔直的海岸线上有A,B两观景台,A在B的正东方向,BP=5(单位:km),有一艘小船停在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.
(1)求A、B两观景台之间的距离;
(2)小船从点P处沿射线AP的方向进行沿途考察,求观景台B到射线AP的最短距离.(结果保留根号)
22.(10分)某商场以每件20元购进一批衬衫,若以每件40元出售,则每天可售出60件,经调查发现,如果每件衬衫每涨价1元,商场平均每天可少售出2件,若设每件衬衫涨价元,回答下列问题:
(1)该商场每天售出衬衫 件(用含的代数式表示);
(2)求的值为多少时,商场平均每天获利1050元?
(3)该商场平均每天获利 (填“能”或“不能”)达到1250元?
23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于、两点,与轴交于点.
(1)求反比例函数的表达式及点坐标;
(2)请直接写出当为何值时,;
(3)求的面积.
24.(10分)如图,在中,,,垂足为,为上一点,连接,作交于.
(1)求证:.
(2)除(1)中相似三角形,图中还有其他相似三角形吗?如果有,请把它们都写出来.(证明不做要求)
25.(12分)如图,在直角坐标系中,点A的坐标为(-2,0),OB=OA,且∠AOB=120°.
(1)求经过A、O、B三点的抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点C,使△OBC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(3)若点M为抛物线上一点,点N为对称轴上一点,是否存在点M、N使得A、O、M、N构成的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
26.(12分)如图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥,该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径是6cm,下底面直径为4cm,母线长为EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积(面积计算结果用表示) .
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、D
4、D
5、B
6、B
7、D
8、C
9、C
10、B
11、D
12、B
二、填空题(每题4分,共24分)
13、11.2
14、
15、1<S<2
16、1.1
17、1.
18、向下.
三、解答题(共78分)
19、(1);(2);(3)点的坐标为,
20、+
21、(1)A、B两观景台之间的距离为=(5+5)km;(2)观测站B到射线AP的最短距离为()km.
22、(1);(2)当时,商场平均每天获利1050元;(3)能
23、(1), ;(2)或;(3)1.
24、(1)证明见解析;(2)有,见解析.
25、(1);(2)(-1,);(3) M1(-1,-),M2(-3,),M3(1,).
26、扇形OAB的圆心角为45°,纸杯的表面积为44.
海南省临高县临高中学2023-2024学年九上数学期末质量检测模拟试题含答案: 这是一份海南省临高县临高中学2023-2024学年九上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如图,四边形的顶点坐标分别为,下列说法中,正确的是,等于等内容,欢迎下载使用。
2023-2024学年海南省东方市八所中学九上数学期末检测模拟试题含答案: 这是一份2023-2024学年海南省东方市八所中学九上数学期末检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年海南省澄迈县澄迈中学九上数学期末达标检测模拟试题含答案: 这是一份2023-2024学年海南省澄迈县澄迈中学九上数学期末达标检测模拟试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,下列图标中,是中心对称图形的是,函数y=kx﹣k,下列事件中,属于必然事件的是等内容,欢迎下载使用。