河南省许昌鄢陵县联考2023-2024学年数学九上期末达标测试试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.下列事件为必然事件的是( )
A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球
B.三角形的内角和为180°
C.打开电视机,任选一个频道,屏幕上正在播放广告
D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上
2.如果可以通过配方写成的形式,那么可以配方成( )
A.B.C.D.
3.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么此时高为18米的旗杆的影长为( )
A.20米B.30米C.16米D.15米
4.某商品先涨价后降价,销售单价由原来元最后调整到元,涨价和降价的百分率都为.根据题意可列方程为( )
A.B.
C.D.
5.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则( )
A.a≠±1B.a=1C.a=﹣1D.a=±1
6.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCB的面积比为( )
A.B.C.D.
7.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为( )
A.B.C.3D.5
8.一个直角三角形的两直角边分别为x,y,其面积为1,则y与x之间的关系用图象表示为( )
A.B.
C.D.
9.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在( )
A.点C1处B.点C2处C.点C3处D.点C4处
10.下列等式中从左到右的变形正确的是( ).
A.B.C.D.
11.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是
A.当x=3时,EC<EMB.当y=9时,EC>EM
C.当x增大时,EC·CF的值增大.D.当y增大时,BE·DF的值不变.
12.将抛物线y=2x2经过怎样的平移可得到抛物线y=2(x+3)2+4( )
A.先向左平移3个单位,再向上平移4个单位B.先向左平移3个单位,再向下平移4个单位
C.先向右平移3个单位,再向上平移4个单位D.先向右平移3个单位,再向下平移4个单位
二、填空题(每题4分,共24分)
13.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是___.
14.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为 .
15.数据3000,2998,3002,2999,3001的方差为__________.
16.设,是关于的一元二次方程的两根,则______.
17.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_____个.
18.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP,以 CP 为 边,在 PC 的右侧作等边△CPQ,连接 AQ 交 BD 延长线于 E,当△CPQ 面积最小时,QE=____________.
三、解答题(共78分)
19.(8分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.
(1)求y与x的函数关系式;
(2)每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?
20.(8分)解方程:x2-2x-3=0
21.(8分)元旦期间,商场中原价为 100元的某种商品经过两次连续降价后以每件81元出售,设这种商品每次降价的百分率相同,求这个百分率.
22.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
23.(10分)如图,中,,以为直径作,交于点,交的延长线于点,连接,.
(1)求证:是的中点;
(2)若,求的长.
24.(10分)如图,已知直线y=-2x+3与抛物线y=x2相交于A,B两点,O为坐标原点.
(1)求点A和B的坐标;
(2)连结OA,OB,求△OAB的面积.
25.(12分)如图,∆ABD内接于半径为5的⊙O,连结AO并延长交BD于点M,交圆⊙O于点C,过点A作AE//BD,交CD的延长线于点E,AB=AM.
(1)求证:∆ABM∽∆ECA.
(2)当CM=4OM时,求BM的长.
(3)当CM=kOM时,设∆ADE的面积为, ∆MCD的面积为,求的值(用含k的代数式表示).
26.(12分)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.
(1)根据图示填写下表:
(2)通过计算得知九(2)班的平均成绩为85分,请计算九(1)班的平均成绩.
(3)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好.
(4)已知九(1)班复赛成绩的方差是70,请计算九(2)班的复赛成绩的方差,并说明哪个班的成绩比较稳定?
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、B
4、A
5、C
6、D
7、B
8、C
9、D
10、A
11、D
12、A
二、填空题(每题4分,共24分)
13、(﹣5, 3)
14、2
15、2
16、-5.
17、8
18、
三、解答题(共78分)
19、(1)y=﹣5x2+110x+1200;(2) 售价定为189元,利润最大1805元
20、,
21、10%
22、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.
23、(1)详见解析;(2).
24、(1)A(1,1) ,B(-3,9);(2)6.
25、 (1)证明见解析;(2);(3)
26、(1)见解析;(2)85分;(3)九(1)班成绩好;(4)九(1)班成绩稳定.
班级
中位数(分)
众数(分)
九(1)
85
九(2)
100
河南省许昌地区2023-2024学年数学九上期末联考试题含答案: 这是一份河南省许昌地区2023-2024学年数学九上期末联考试题含答案,共9页。试卷主要包含了答题时请按要求用笔,菱形具有而矩形不具有的性质是等内容,欢迎下载使用。
河南省许昌市长葛市2023-2024学年九上数学期末联考试题含答案: 这是一份河南省许昌市长葛市2023-2024学年九上数学期末联考试题含答案,共9页。试卷主要包含了-5的倒数是,已知等内容,欢迎下载使用。
河南省洛阳嵩县联考2023-2024学年九上数学期末达标测试试题含答案: 这是一份河南省洛阳嵩县联考2023-2024学年九上数学期末达标测试试题含答案,共8页。试卷主要包含了下列命题正确的是等内容,欢迎下载使用。