河南省漯河郾城区六校联考2023-2024学年数学九上期末达标测试试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.如图,是的直径,点是延长线上一点,是的切线,点是切点,,若半径为,则图中阴影部分的面积为( )
A.B.C.D.
2.如图,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD:AB=3:1,则点C的坐标是( )
A.(2,7)B.(3,7)C.(3,8)D.(4,8)
3.如图所示的网格是正方形网格,图中△ABC绕着一个点旋转,得到△A'B'C',点C的对应点C' 所在的区域在1区∼4区中,则点C' 所在单位正方形的区域是( )
A.1区B.2区C.3区D.4区
4.若反比例函数(为常数)的图象在第二、四象限,则的取值范围是( )
A.B.且
C.D.且
5.有一副三角板,含45°的三角板的斜边与含30°的三角板的长直角边相等,如图,将这副三角板直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,则AF的长为( )
A.2B.2﹣2C.4﹣2D.2﹣
6.抛物线的对称轴为
A.B.C.D.
7.函数中,自变量的取值范围是( )
A.B.C.D.x≤1或x≠0
8.点P(-6,1)在双曲线上,则k的值为( )
A.-6B.6C.D.
9.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是( )
A.4.25mB.4.45mC.4.60mD.4.75m
10.若,则的值为( )
A.0B.5C.-5D.-10
11.如图所示,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴于点A,点C在函数y=(x>0)的图象上,若OA=1,则k的值为( )
A.4B.2C.2D.
12.下列事件中,为必然事件的是( )
A.太阳从东方升起B.发射一枚导弹,未击中目标
C.购买一张彩票,中奖D.随机翻到书本某页,页码恰好是奇数
二、填空题(每题4分,共24分)
13.如图,平行四边形分别切于点,连接并延长交于点,连接与刚好平行,若,则的直径为______.
14.若二次函数y=x2+x+1的图象,经过A(﹣3,y1),B(2,y2),C(,y3),三点y1,y2,y3大小关系是__(用“<”连接)
15.某同学想要计算一组数据105,103,94,92,109,85的方差,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为,则______(填“>”、“=”或“<”).
16.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.
17.计算:|﹣3|+(2019﹣π)0﹣+()-2=_______.
18.已知二次函数y=ax2+bx+c的图象如图所示,则a_____1,b_____1,c_____1.
三、解答题(共78分)
19.(8分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA
与⊙O的另一个交点为E,连结AC,CE.
(1)求证:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的长.
20.(8分)在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),
(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;
(Ⅱ)不论a取何实数,该抛物线都经过定点H.
①求点H的坐标;
②证明点H是所有抛物线顶点中纵坐标最大的点.
21.(8分)如图,直线y=2x与反比例函数y=(x>0)的图象交于点A(4,n),AB⊥x轴,垂足为B.
(1)求k的值;
(2)点C在AB上,若OC=AC,求AC的长;
(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD=S△ACD,求点D的坐标.
22.(10分)近期江苏省各地均发布“雾霾”黄色预警,我市某口罩厂商生产一种新型口罩产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系满足下表.
(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并直接写出y与x之间的函数关系式为__________;
(2)当销售单价为多少元时,厂商每月获得的利润为440万元?
(3)如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?
23.(10分)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣4,1),B(﹣1,1),C(﹣1,3),请解答下列问题:
(1)画出△ABC关于原点O的中心对称图形△A1B1C1;
(2)画出△ABC关于y轴对称图形△A2B2C2,则△A2B2C2与△A1B1C1的位置关系是 .
24.(10分)某课桌生产厂家研究发现,倾斜12°至24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度得桌面.新桌面的设计图如图1,可绕点旋转,在点处安装一根长度一定且处固定,可旋转的支撑臂,.
(1)如图2,当时,,求支撑臂的长;
(2)如图3,当时,求的长.(结果保留根号)
(参考数据:,,,)
25.(12分)某配餐公司有A,B两种营养快餐。一天,公司售出两种快餐共640份,获利2160元。两种快餐的成本价、销售价如下表。
(1)求该公司这一天销售A、B两种快餐各多少份?
(2)为扩大销售,公司决定第二天对一定数量的A、B两种快餐同时举行降价促销活动。降价的A、B两种快餐的数量均为第一天销售A、B两种快餐数量的2倍,且A种快餐按原销售价的九五折出售,若公司要求这些快餐当天全部售出后,所获的利润不少于3280元,那么B种快餐最低可以按原销售价打几折出售?
26.(12分)甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3、4和5;丙口袋中装有两个相同的小球,它们分别写有6和1.从这3个口袋中各随机地取出1个小球.
(1)取出的3个小球上恰好有两个偶数的概率是多少?
(2)取出的3个小球上全是奇数的概率是多少?
参考答案
一、选择题(每题4分,共48分)
1、B
2、A
3、D
4、C
5、D
6、B
7、D
8、A
9、B
10、C
11、C
12、A
二、填空题(每题4分,共24分)
13、
14、y3<y1=y1.
15、=
16、3.
17、
18、< < >
三、解答题(共78分)
19、(1)见解析(2)
20、(Ⅰ)a=﹣,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);②证明见解析.
21、(1)32;(2)5;(3)D(10,0)或(,0).
22、(1)y=﹣2x+100;(2)当销售单价为28元或1元时,厂商每月获得的利润为41万元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为510万元.
23、(1)作图见解析;(2)关于x轴对称.
24、(1)12cm;(2)12+6或12−6.
25、(1)该公司这一天销售A、B两种快餐各400份,240份;(2)B种快餐最低可以按原销售价打8.5折出售
26、 (1);(2).
销售单价x(元/件)
…
20
25
30
40
…
每月销售量y(万件)
…
60
50
40
20
…
A种快餐
B种快餐
成本价
5元/份
6元/份
销售价
8元/份
10元/份
广东省佛山禅城区七校联考2023-2024学年九上数学期末达标检测试题含答案: 这是一份广东省佛山禅城区七校联考2023-2024学年九上数学期末达标检测试题含答案,共7页。试卷主要包含了方程的解是,下列说法正确的是等内容,欢迎下载使用。
德州陵城区五校联考2023-2024学年九上数学期末达标检测试题含答案: 这是一份德州陵城区五校联考2023-2024学年九上数学期末达标检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如图,点A是反比例函数y=,如图等内容,欢迎下载使用。
2023-2024学年河南省漯河郾城区六校联考九年级数学第一学期期末达标检测试题含答案: 这是一份2023-2024学年河南省漯河郾城区六校联考九年级数学第一学期期末达标检测试题含答案,共7页。