河南省三门峡灵宝市2023-2024学年九上数学期末调研模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,的半径弦于点,连结并延长交于点,连结.若,,则的长为( )
A.5B.C.D.
2.下列叙述,错误的是( )
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直平分的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线相等的四边形是矩形
3.下列方程中,满足两个实数根的和等于3的方程是( )
A.2x2+6x﹣5=0B.2x2﹣3x﹣5=0C.2x2﹣6x+5=0D.2x2﹣6x﹣5=0
4.已知关于x的一元二次方程有实数根,则m的取值范围是( )
A.m≥2B.m≤5C.m>2D.m<5
5.如图,在ABCD中,E为CD上一点,已知S△DEF: S△ABF=4: 25,则DE:EC为( )
A.4:5B.4:25C.2:3D.3:2
6.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )
A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件
C.事件①和②都是随机事件D.事件①和②都是必然事件
7.如图1,在Rt△ABC中,∠B=90°,∠ACB=45°,延长BC到D,使CD=AC,则tan22.5°=( )
A.B.C.D.
8.下列说法正确的是( )
A.“任意画出一个等边三角形,它是轴对称图形”是随机事件
B.某种彩票的中奖率为,说明每买1000张彩票,一定有一张中奖
C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为
D.“概率为1的事件”是必然事件
9.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是
A.B.C.D.
10.某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为( )
A.15元B.400元C.800元D.1250元
11.已知点都在反比例函数的图像上,那么( )
A.B.C.D.的大小无法确定
12.一个盒子中装有2个蓝球,3个红球和若干个黄球,小明通过多次摸球试验后发现,摸取到黄球的频率稳定在0.5左右,则黄球有( )个.
A.4B.5C.6D.10
二、填空题(每题4分,共24分)
13.《算学宝鉴》中记载了我国数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为_________.
14.在△ABC中,AB=10,AC=8,B为锐角且,则BC=_____.
15.数据3000,2998,3002,2999,3001的方差为__________.
16.计算:(π﹣3)0+(﹣)﹣2﹣(﹣1)2=_____.
17.如图所示,平面上七个点,,,,,,,图中所有的连线长均相等,则______.
18.小明身高是1.6m,影长为2m,同时刻教学楼的影长为24m,则楼的高是_____.
三、解答题(共78分)
19.(8分)已知关于x的一元二次方程x2-2x+m-1=1.
(1)若此方程有两个不相等的实数根,求实数m的取值范围;
(2)当Rt△ABC的斜边长c=,且两直角边a和b恰好是这个方程的两个根时,求Rt△ABC的面积.
20.(8分)一个盒子中装有两个红球,一个白球和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请你用列表法和画树状图法求两次摸到的球的颜色能配成紫色的概率(说明:红色和蓝色能配成紫色)
21.(8分)如图,已知是的直径,是的弦,点在外,连接,的平分线交于点.
(1)若,求证:是的切线;
(2)若,,求弦的长.
22.(10分)如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.
(1)求直线的解析式.
(2)点为直线下方抛物线上的一点,连接,.当的面积最大时,连接,,点是线段的中点,点是线段上的一点,点是线段上的一点,求的最小值.
(3)点是线段的中点,将抛物线与轴正方向平移得到新抛物线,经过点,的顶点为点,在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.
23.(10分)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.
(1)求证:BE=CE;
(2)若AB=6,求弧DE的长;
(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.
24.(10分)某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?
25.(12分)我市有2000名学生参加了2018年全省八年级数学学业水平测试.其中有这样一题:如图,分别以线段BD的端点B、D为圆心,相同的长为半径画弧,两弧相交于A、C两点,连接AB、AD、CB、CD.若AB=2,BD=2,求四边形ABCD的面积.
统计我市学生解答和得分情况,并制作如下图表:
(1)求学业水平测试中四边形ABCD的面积;
(2)请你补全条形统计图;
(3)我市该题的平均得分为多少?
(4)我市得3分以上的人数为多少?
26.(12分)在的方格纸中,的三个顶点都在格点上.
在图1中画出线段BD,使,其中D是格点;
在图2中画出线段BE,使,其中E是格点.
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、D
4、B
5、C
6、C
7、B
8、D
9、B
10、D
11、C
12、B
二、填空题(每题4分,共24分)
13、x(x-12)=864
14、8+2或8﹣2
15、2
16、1
17、
18、19.2m
三、解答题(共78分)
19、(1)m<2;(2)
20、.
21、(1)证明见解析;(2).
22、(1);(2)3;(3)存在,点Q的坐标为或或或.
23、(1)证明见解析;(2)弧DE的长为π;(3)当∠F的度数是36°时,BF与⊙O相切.理由见解析.
24、每件商品售价60元或50元时,该商店销售利润达到1200元.
25、(1);(2)见解析;(3)3.025分;(4)1578人.
26、(1)画图见解析;(2)画图见解析.
2023-2024学年河南省三门峡市灵宝市七年级(上)期末数学试卷(含解析): 这是一份2023-2024学年河南省三门峡市灵宝市七年级(上)期末数学试卷(含解析),共12页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023-2024学年河南省三门峡市灵宝市九年级(上)期末数学试卷(含解析): 这是一份2023-2024学年河南省三门峡市灵宝市九年级(上)期末数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省商水县2023-2024学年九上数学期末调研模拟试题含答案: 这是一份河南省商水县2023-2024学年九上数学期末调研模拟试题含答案,共8页。试卷主要包含了下列四个数中是负数的是,已知,如图,E,若,则下列等式一定成立的是等内容,欢迎下载使用。