江西省抚州市乐安县2023-2024学年数学九上期末综合测试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是( )
A.12πcm2B.15πcm2C.18πcm2D.24πcm2
2.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为
A.B.C.D.
3.下列事件中,必然发生的事件是( )
A.随意翻到一本书的某页,这页的页码是奇数
B.通常温度降到0℃以下,纯净的水结冰
C.地面发射一枚导弹,未击中空中目标
D.测量某天的最低气温,结果为-150℃
4.已知函数的图象如图所示,则一元二次方程根的存在情况是
A.没有实数根B.有两个相等的实数根
C.有两个不相等的实数根D.无法确定
5.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )
A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件
C.事件①和②都是随机事件D.事件①和②都是必然事件
6.如图,正方形的边长为,对角线相交于点,将直角三角板的直角顶点放在点处,两直角边分别与重叠,当三角板绕点顺时针旋转角时,两直角边与正方形的边交于两点,则四边形的周长( )
A.先变小再变大B.先变大再变小
C.始终不变D.无法确定
7.如图,△ABC中,DE∥BC,BE与CD交于点O,AO与DE,BC交于点N、M,则下列式子中错误的是( )
A.B.C.D.
8.在x2□2xy□y2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( )
A.1B.C.D.
9.小悦乘座中国最高的摩天轮“南昌之星”,从最低点开始旋转一圈,她离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经测试得出部分数据如表.根据函数模型和数据,可推断出南昌之星旋转一圈的时间大约是( )
A.32分B.30分C.15分D.13分
10.已知是方程的一个根,则代数式的值等于( )
A.3B.2C.0D.1
11.下列图形中既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
12.在同一时刻,身高1.6m的小强在阳光下的影长为0.8m,一棵大树的影长为4.8m,则树的高度为( )
A.4.8mB.6.4mC.9.6mD.10m
二、填空题(每题4分,共24分)
13.如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为_____.
14.已知⊙O的直径为10cm,线段OP=5cm,则点P与⊙O的位置关系是__.
15.我市博览馆有A,B,C三个入口和D,E两个出口,小明入馆游览,他从A口进E口出的概率是____.
16.进价为元/件的商品,当售价为元/件时,每天可销售件,售价每涨元,每天少销售件,当售价为________元时每天销售该商品获得利润最大,最大利润是________元.
17.一家鞋店对上一周某品牌女鞋的销量统计如下:
该店决定本周进货时,多进一些尺码为23.5厘米的鞋,影响鞋店决策的统计量是___________ .
18.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB'交CD于点E,若AB=3cm,则线段EB′的长为_____.
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,己知点,点在轴上,并且,动点在过三点的拋物线上.
(1)求抛物线的解析式.
(2)作垂直轴的直线,在第一象限交直线于点,交抛物线于点,求当线段的长有最大值时的坐标.并求出最大值是多少.
(3)在轴上是否存在点,使得△是等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.
20.(8分)(1)(问题发现)
如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为
(2)(拓展研究)
在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;
(3)(问题发现)
当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.
21.(8分)计算:2cs30°+(π﹣3.14)0﹣
22.(10分)如图,一个圆形水池的中央垂直于水面安装了一个柱形喷水装置OA,顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立如图所示的直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式可以用表示,且抛物线经过点B,C;
(1)求抛物线的函数关系式,并确定喷水装置OA的高度;
(2)喷出的水流距水面的最大高度是多少米?
(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?
23.(10分)如图,一次函数y=kx+b(b=0)的图象与反比例函数y=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(﹣3,4),点B的坐标为(6,n)
(1)求反比例函数和一次函数的解析式;
(2)连接OB,求△AOB的面积;
(3)若kx+b<,直接写出x的取值范围.
24.(10分)如图,在中,,是边上的中线,过点作,垂足为,交于点,.
(1)求的值:
(2)若,求的长.
25.(12分)如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F,E,且.
(1)求证:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
26.(12分)如图,在平面直角坐标系中,△ABC顶点的坐标分别为A(﹣3,3),B(﹣5,2),C(﹣1,1).
(1)以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2,且A₁B₁C位于点C的异侧,并表示出点A1的坐标.
(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.
(3)在(2)的条件下求出点B经过的路径长(结果保留π).
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、B
4、C
5、C
6、A
7、D
8、C
9、B
10、A
11、D
12、C
二、填空题(每题4分,共24分)
13、10
14、点P在⊙O上
15、.
16、55,3.
17、众数
18、1cm
三、解答题(共78分)
19、(1);(2)存在,最大值为4,此时的坐标为;(3)存在,或或或
20、(1)BE=AF;(2)无变化;(3)﹣1或+1.
21、.
22、(1),米;(2)米;(3)至少要米.
23、(1),y=﹣x+2;(2)9;(3)x>6或﹣3<x<1
24、(1);(2)4
25、(1)详见解析;(2).
26、(1)见解析,A1(3,﹣3);(2)见解析;(3)
x(分)
…
13.5
14.7
16.0
…
y(米)
…
156.25
159.85
158.33
…
尺码(厘米)
22
22.5
23
23.5
24
24.5
25
销量(双)
1
2
5
11
7
3
1
江西省抚州市2023-2024学年数学九上期末预测试题含答案: 这是一份江西省抚州市2023-2024学年数学九上期末预测试题含答案,共8页。试卷主要包含了某同学用一根长为等内容,欢迎下载使用。
江西省抚州市宜黄县2023-2024学年数学九上期末综合测试试题含答案: 这是一份江西省抚州市宜黄县2023-2024学年数学九上期末综合测试试题含答案,共8页。试卷主要包含了点P关于原点的对称点的坐标为,在中,,,若,则的长为等内容,欢迎下载使用。
江西省抚州市南城县2023-2024学年数学八上期末调研模拟试题含答案: 这是一份江西省抚州市南城县2023-2024学年数学八上期末调研模拟试题含答案,共9页。试卷主要包含了定义运算“⊙”等内容,欢迎下载使用。