江西省抚州市宜黄县2023-2024学年数学九上期末综合测试试题含答案
展开这是一份江西省抚州市宜黄县2023-2024学年数学九上期末综合测试试题含答案,共8页。试卷主要包含了点P关于原点的对称点的坐标为,在中,,,若,则的长为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,为圆的切线,交圆于点,为圆上一点,若,则的度数为( ).
A.B.C.D.
2.在Rt△ABC中,∠C=90°,AB=13,AC=5,则tanA的值为
A.B.C.D.
3.下列计算正确的是( )
A.;B.;C.;D..
4.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是( )
A.B.C.D.10
5.点P(6,-8)关于原点的对称点的坐标为( )
A.(-6,8)B.(–6,-8)C.(8,-6)D.(–8,-6)
6.若是方程的一个根.则代数式的值是( )
A.B.C.D.
7.已知关于x的方程x2+ax﹣6=0的一个根是2,则a的值是( )
A.﹣1B.0C.1D.2
8.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象的形状大致是( )
A.B.
C.D.
9.《代数学》中记载,形如的方程,求正数解的几何方法是:“如图1,先构造一个面积为的正方形,再以正方形的边长为一边向外构造四个面积为的矩形,得到大正方形的面积为,则该方程的正数解为.”小聪按此方法解关于的方程时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为( )
A.6B.C.D.
10.在中,,,若,则的长为( ).
A.B.C.D.
二、填空题(每小题3分,共24分)
11.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.
12.如图,矩形对角线交于点为线段上一点,以点为圆心,为半径画圆与相切于的中点交于点,若,则图中阴影部分面积为________________.
13.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分别为AC、AD上两动点,连接CF、EF,则CF+EF的最小值为_____.
14.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______
15.在平面直角坐标系中,点A(0,1)关于原点对称的点的坐标是_______.
16.一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是______.
17.已知x=1是一元二次方程x2﹣3x+a=0的一个根,则方程的另一个根为_____.
18.如图,点、、…在反比例函数的图象上,点、、……在反比例函数的图象上,,且,则(为正整数)的纵坐标为______.(用含的式子表示)
三、解答题(共66分)
19.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
20.(6分)如图1,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,,BE分别交AD、AC于点F、G.
(1)判断△FAG的形状,并说明理由;
(2)如图2,若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;
(3)在(2)的条件下,若BG=26,BD﹣DF=7,求AB的长.
21.(6分)为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:
(1)这10位居民一周内使用共享单车次数的中位数是 次,众数是 次.
(2)若小明同学把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是 .(填“中位数”,“众数”或“平均数”)
(3)若该小区有2000名居民,试估计该小区居民一周内使用共享单车的总次数.
22.(8分)如图,已知点是坐标原点,两点的坐标分别为,.
(1)以点为位似中心在轴的左侧将放大到原图的2倍(即新图与原图的相似比为2),画出对应的;
(2)若内部一点的坐标为,则点对应点的坐标是______;
(3)求出变化后的面积 ______ .
23.(8分)阅读材料,回答问题:
材料
题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率
题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?
我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.
问题:
(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?
(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案
(3)请直接写出题2的结果.
24.(8分)一个不透明的口袋里装着分别标有数字,,0,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.
(1)从中任取一球,求所抽取的数字恰好为负数的概率;
(2)从中任取一球,将球上的数字记为,然后把小球放回;再任取一球,将球上的数字记为,试用画树状图(或列表法)表示出点所有可能的结果,并求点在直线上的概率.
25.(10分)如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.
(1)求∠BAC的度数;
(2)若PA=,求点O到弦AB的距离.
26.(10分)如图,在矩形纸片中,已知,,点在边上移动,连接,将多边形沿折叠,得到多边形,点、的对应点分别为点,.
(1)连接.则______,______°;
(2)当恰好经过点时,求线段的长;
(3)在点从点移动到点的过程中,求点移动的路径长.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、B
4、B
5、A
6、C
7、C
8、C
9、B
10、A
二、填空题(每小题3分,共24分)
11、4π
12、
13、
14、
15、 (0,-1)
16、
17、
18、
三、解答题(共66分)
19、10,1.
20、(1)等腰三角形,理由见解析;(2)成立,理由见解析;(3).
21、(1)10,10;(2)中位数和众数;(3)22000
22、 (1)见解析;(2) ;(3)10
23、题1.;题2.(1)至少摸出两个绿球;(2)方案详见解析;(3).
24、(1)所抽取的数字恰好为负数的概率是;(2)点(x,y)在直线y=﹣x﹣1上的概率是.
25、(1)30°;(1)1
26、(1),30;(2);(3)的长
使用次数
0
5
10
15
20
人数
1
1
4
3
1
相关试卷
这是一份江西省抚州市乐安县2023-2024学年数学九上期末综合测试试题含答案,共8页。
这是一份江西省抚州市2023-2024学年数学九上期末预测试题含答案,共8页。试卷主要包含了某同学用一根长为等内容,欢迎下载使用。
这是一份2023-2024学年江西省南昌市新建区数学九上期末综合测试试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。