广东省韶关市名校2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.如图,要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明( )
A.AB=AD且AC⊥BDB.AB=AD且AC=BDC.∠A=∠B且AC=BDD.AC和BD互相垂直平分
2.如图在△ABC中,点D、E分别在△ABC的边AB、AC上,不一定能使△ADE与△ABC相似的条件是( )
A.∠AED=∠BB.∠ADE=∠CC.D.
3.在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为( )
A.6个B.8个C.9个D.12个
4.如图,中,,,,分别为边的中点,将绕点顺时针旋转到的位置,则整个旋转过程中线段所扫过部分的面积(即阴影部分面积)为( )
A.B.C.D.
5.一次函数与二次函数在同一平面直角坐标系中的图像可能是( )
A.B.C.D.
6.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( ).
A. B. C. D.
7.在Rt△ABC中,∠C = 90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中成立的是( )
A.B.C.D.
8.下列各点在反比例函数y=-图象上的是( )
A.(3,2)B.(2,3)C.(-3,-2)D.( - ,2 )
9.模型结论:如图①,正内接于,点是劣弧上一点,可推出结论.
应用迁移:如图②,在中,,,,是内一点,则点到三个顶点的距离和的最小值为( )
A.B.5C.D.
10.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是( )
A.50°B.60°C.80°D.100°
11.如图,点D是△ABC的边BC上一点,∠BAD=∠C,AC=2AD,如果△ACD的面积为15,那么△ABD的面积为( )
A.15B.10C.7.5D.5
12.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是( )
A.12B.9C.4D.3
二、填空题(每题4分,共24分)
13.抛物线y=(m2-2)x2-4mx+n的对称轴是x=2,且它的最高点在直线y=x+2上,则m=________,n=________.
14.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线 图象上的概率为__.
15.如图,从一块直径是的圆形铁皮上剪出一个圆心角是的扇形,如果将剪下来的扇形围成一个圆锥,那么圆锥的底面圆的半径为___________.
16.已知:,且y≠4,那么=______.
17.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为____________.
18.在平面直角坐标系中,点(4,-5)关于原点的对称点的坐标是________.
三、解答题(共78分)
19.(8分)解方程:;
二次函数图象经过点,当时,函数有最大值,求二次函数的解析式.
20.(8分)如图,在中,,.
用直尺和圆规作,使圆心O在BC边,且经过A,B两点上不写作法,保留作图痕迹;
连接AO,求证:AO平分.
21.(8分)如图,在中,弦AB,CD相交于点E,=,点D在上,连结CO,并延长CO交线段AB于点F,连接OA,OB,且OA=2,∠OBA=30°
(1)求证:∠OBA=∠OCD;
(2)当AOF是直角三角形时,求EF的长;
(3)是否存在点F,使得,若存在,请求出EF的长,若不存在,请说明理由.
22.(10分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小、质地完全相同,小李从布袋里随机取出一个小球,记下数字为x,小张在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).
(1)画树状图或列表,写出点Q所有可能的坐标;
(2)求点Q(x,y)在函数y=﹣x+5图象上的概率.
23.(10分)如图,四边形OABC为平行四边形,B、C在⊙O上,A在⊙O外,sin∠OCB=.
(1)求证:AB与⊙O相切;
(2)若BC=10cm,求图中阴影部分的面积.
24.(10分)如图,在电线杆上的点处引同样长度的拉线,固定电线杆,在离电线杆6米处安置测角仪(其中点、、、在同一条直线上),在处测得电线杆上点处的仰角为,测角仪的高为米.
(1)求电线杆上点离地面的距离;
(2)若拉线,的长度之和为18米,求固定点和之间的距离.
25.(12分)为进一步发展基础教育,自年以来,某县加大了教育经费的投入,年该县投入教育经费万元.年投入教育经费万元.假设该县这两年投入教育经费的年平均增长率相同.求这两年该县投入教育经费的年平均增长率.
26.(12分)(2011四川泸州,23,6分)甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,1.从这3个口袋中各随机地取出1个小球.
(1)求取出的3个小球的标号全是奇数的概率是多少?
(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、C
4、C
5、D
6、B
7、B
8、D
9、D
10、D
11、D
12、A
二、填空题(每题4分,共24分)
13、-1 -1
14、
15、
16、
17、1
18、(-4,5)
三、解答题(共78分)
19、;
20、 (1)作图见解析;(2)证明见解析.
21、(1)详见解析;(2)或;(3)
22、(1)画树状图或列表见解析;(2).
23、(1)见解析(2).
24、(1)米(2)米
25、该县投入教育经费的年平均增长率为20%
26、解:(1);(2).
2023-2024学年广东省韶关市乐昌县数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年广东省韶关市乐昌县数学九年级第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年广东省惠州市名校九年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年广东省惠州市名校九年级数学第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了如图,已知二次函数,下列结论等内容,欢迎下载使用。
2023-2024学年上海市闸北区名校数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年上海市闸北区名校数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了若∽,,,,则的长为,已知关于的方程个等内容,欢迎下载使用。