山西省平定县联考2023-2024学年九上数学期末学业水平测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.方程x2+4x+4=0的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.有一个实数根D.没有实数根
2.如图,是圆内接四边形的一条对角线,点关于的对称点在边上,连接.若,则的度数为( )
A.106°B.116°C.126°D.136°
3.若(、均不为0),则下列等式成立的是( )
A.B.C.D.
4.如图,点,,都在上,,则等于( )
A.B.C.D.
5.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )
A.1个B.2个C.3个D.4
6.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( )
A.△AFD≌△DCEB.AF=AD
C.AB=AFD.BE=AD﹣DF
7.一组数据:2,3,6,4,3,5,这组数据的中位数、众数分别是( )
A.3,3B.3,4C.3.5,3D.5,3
8.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是( )
A.∠ABP=∠CB.∠APB=∠ABC
C.D.
9.要将抛物线平移后得到抛物线,下列平移方法正确的是( )
A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位
C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位
10.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为( )
A.B.1C.D.
11.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )
A.B.C.D.
12.如图,在ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是( )
A.梯形B.矩形C.菱形D.正方形
二、填空题(每题4分,共24分)
13.已知抛物线与轴交点的横坐标分别为3,1;与轴交点的纵坐标为6,则二次函数的关系式是____.
14.四边形ABCD内接于⊙O,∠A=125°,则∠C的度数为_____°.
15.圆锥的侧面展开图的圆心角是120°,其底面圆的半径为2cm,则其侧面积为_____.
16.如图,内接于半径为的半,为直径,点是弧的中点,连结交于点,平分交于点,则______.若点恰好为的中点时,的长为______.
17.已知△ABC的三边长a=3,b=4,c=5,则它的内切圆半径是________
18.已知x1,x2是关于x的方程x2﹣kx+3=0的两根,且满足x1+x2﹣x1x2=4,则k的值为_____.
三、解答题(共78分)
19.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.
(1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.
20.(8分)如图,为了测量山脚到塔顶的高度(即的长),某同学在山脚处用测角仪测得塔顶的仰角为,再沿坡度为的小山坡前进400米到达点,在处测得塔顶的仰角为.
(1)求坡面的铅垂高度(即的长);
(2)求的长.(结果保留根号,测角仪的高度忽略不计).
21.(8分)如图是一种简易台灯的结构图,灯座为△ABC,A、C、D在同一直线上,量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.求台灯的高(即台灯最高点E到底盘AB的距离).(结果取整,参考数据sin15°≈0.26,cs15°≈0.97,tan15°≈0.27,≈1.73)
22.(10分)如图,直线与轴交于点,与轴交于点,抛物线与直线交于,两点,点是抛物线的顶点.
(1)求抛物线的解析式;
(2)点是直线上方抛物线上的一个动点,其横坐标为,过点作轴的垂线,交直线于点,当线段的长度最大时,求的值及的最大值.
(3)在抛物线上是否存在异于、的点,使中边上的高为,若存在求出点的坐标;若不存在请说明理由.
23.(10分)如图1,抛物线y = ax2+bx-3经过A、B、C三点,己知点A(-3,0)、C (1, 0).
(1)求此抛物线的解析式;
(2)点P是直线AB下方的抛物线上一动点(不与A、B重合).
①过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求 出此时P点的坐标;
②如图2,连接AP,以AP为边作图示一侧的正方形APMN,当它恰好有一个顶点落在抛物 线对称轴上时,求出对应的P点的坐标.
24.(10分)抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上.
(1)求b、c的值;
(2)画出抛物线的简图并写出它与y轴的交点C的坐标;
(3)根据图象直接写出:点C关于直线x=2对称点D的坐标 ;若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为 (用含m、n的式子表示).
25.(12分)如图1,在矩形中,,点从点出发向点移动,速度为每秒1个单位长度,点从点出发向点移动,速度为每秒2个单位长度. 两点同时出发,且其中的任何一点到达终点后,另一点的移动同时停止.
(1)若两点的运动时间为,当为何值时,?
(2)在(1)的情况下,猜想与的位置关系并证明你的结论.
(3)①如图2,当时,其他条件不变,若(2)中的结论仍成立,则_________.
②当,时,其他条件不变,若(2)中的结论仍成立,则_________(用含的代数式表示).
26.(12分)如图,在ABC中,点D,E分别在边AC,AB上,且AE·AB=AD·AC,连接DE,BD.
(1)求证:ADE~ABC.
(2)若点E为AB为中点,AD:AE=6:5,ABC的面积为50,求BCD面积.
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、D
4、C
5、B
6、B
7、C
8、D
9、A
10、B
11、A
12、C
二、填空题(每题4分,共24分)
13、.
14、1.
15、12πcm
16、
17、1
18、2
三、解答题(共78分)
19、 (1)黄球有1个;(2);(3).
20、(1)200;(2).
21、台灯的高约为45cm.
22、(1);(2)当时,PM有最大值;(3)存在,理由见解析;,,,
23、(1)y = x2+2x﹣3;(2)①(﹣,),②(﹣-1,2)或(,)或(-1,-4)
24、(1)b=4,c=﹣4;(2)见解析,(0,﹣4);(3)(4,﹣4),(4﹣m,n)
25、(1);(2),证明见解析;(3)①;②
26、 (1)详见解析; (2)14
2023-2024学年四川省乐至县联考九上数学期末学业水平测试模拟试题含答案: 这是一份2023-2024学年四川省乐至县联考九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了两三角形的相似比是2,抛物线y=2-3的对称轴是等内容,欢迎下载使用。
陕西省岐山县联考2023-2024学年九上数学期末学业水平测试模拟试题含答案: 这是一份陕西省岐山县联考2023-2024学年九上数学期末学业水平测试模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
福建省鲤城区六校联考2023-2024学年九上数学期末学业水平测试模拟试题含答案: 这是一份福建省鲤城区六校联考2023-2024学年九上数学期末学业水平测试模拟试题含答案,共9页。试卷主要包含了已知二次函数,如图,在中,,,,则等于等内容,欢迎下载使用。