四川省遂宁市安居区石洞中学2023-2024学年九上数学期末学业水平测试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.二次函数y=ax2+bx+c的图象如图所示,在ab、ac、b2﹣4ac,2a+b,a+b+c,这五个代数式中,其值一定是正数的有( )
A.1个B.2个C.3个D.4个
2.如图,AB是⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且AO=CD,则∠PCA=( )
A.30°B.60°C.67.5°D.45°
3.一元二次方程x2﹣x﹣2=0的解是( )
A.x1=﹣1,x2=﹣2
B.x1=1,x2=﹣2
C.x1=1,x2=2
D.x1=﹣1,x2=2
4.下列说法不正确的是( )
A.所有矩形都是相似的
B.若线段a=5cm,b=2cm,则a:b=5:2
C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC= cm
D.四条长度依次为lcm,2cm,2cm,4cm的线段是成比例线段
5.二次函数的部分图象如图所示,由图象可知方程的根是( )
A.B.
C.D.
6.若关于x的一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是( )
A.k≥﹣1且k≠0B.k≥﹣1C.k≤1D.k≤1且k≠0
7.经过两年时间,我市的污水利用率提高了.设这两年污水利用率的平均增长率是,则列出的关于的一元二次方程为( )
A.B.
C.D.
8.关于抛物线y=x2﹣6x+9,下列说法错误的是( )
A.开口向上B.顶点在x轴上
C.对称轴是x=3D.x>3时,y随x增大而减小
9.已知,则=( )
A.B.C.D.
10.如图,AB是⊙O的直径,点C,D在直径AB一侧的圆上(异于A,B两点),点E在直径AB另一侧的圆上,若∠E=42°,∠A=60°,则∠B=( )
A.62°B.70°C.72°D.74°
11.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )
A.B.C.D.
12.某学校要种植一块面积为200m2的长方形草坪,要求两边长均不小于10m,则草坪的一边长y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.抛物线在对称轴_____(填“左侧”或“右侧”)的部分是下降的.
14.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.
15.将抛物线向上平移1个单位后,再向左平移2个单位,得一新的抛物线,那么新的抛物线的表达式是__________________________.
16.用配方法解方程时,可配方为,其中________.
17.边心距为的正六边形的半径为_______.
18.抛物线y=(x﹣1)2+3的对称轴是直线_____.
三、解答题(共78分)
19.(8分)已知二次函数的图象过点A(1,0),B(-2,0),C(0,2),求这个函数的解析式.
20.(8分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.
(1)求证:CE=EF;
(2)连接AF并延长,交⊙O于点G.填空:
①当∠D的度数为 时,四边形ECFG为菱形;
②当∠D的度数为 时,四边形ECOG为正方形.
21.(8分)如图,CD是⊙O的切线,点C在直径AB的延长线上.
(1)求证:∠CAD=∠BDC;
(2)若BD=AD,AC=3,求CD的长.
22.(10分)如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4)连接BC,DB,DC.
(1)求抛物线的函数解析式;
(2)△BCD的面积是否存在最大值,若存在,求此时点D的坐标;若不存在,说明理由;
(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.
23.(10分)如图,、交于点,,且平分.
(1)求证:;
(2)若,,,求的长.
24.(10分)如图1,在中,为锐角,点为射线上一点,联结,以为一边且在的右侧作正方形.
(1)如果,,
①当点在线段上时(与点不重合),如图2,线段所在直线的位置关系为 ,线段的数量关系为 ;
②当点在线段的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果,是锐角,点在线段上,当满足什么条件时,(点不重合),并说明理由.
25.(12分)如图,已知抛物线经过坐标原点和轴上另一点,顶点的坐标为.矩形的顶点与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=1.
(1)求该抛物线所对应的函数关系式;
(2)将矩形以每秒个单位长度的速度从图1所示的位置沿轴的正方向匀速平行移动,同时一动点也以相同的速度从点出发向匀速移动,设它们运动的时间为秒,直线与该抛物线的交点为(如图2所示).
①当,判断点是否在直线上,并说明理由;
②设P、N、C、D以为顶点的多边形面积为,试问是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
26.(12分)如图,在中,,,以为原点所在直线为轴建立平面直角坐标系,的顶点在反比例函数的图象上.
(1)求反比例函数的解析式:
(2)将向右平移个单位长度,对应得到,当函数的图象经过一边的中点时,求的值.
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、D
4、A
5、A
6、A
7、A
8、D
9、B
10、C
11、B
12、C
二、填空题(每题4分,共24分)
13、右侧
14、6+π.
15、y=(x+2)2-1
16、-6
17、8
18、x=1
三、解答题(共78分)
19、y=-x2-x+2
20、(1)证明见解析;(2)①30°;②22.5°.
21、(1)证明见解析;(1)CD=1.
22、(1);(2)存在,D的坐标为(2,6);(3)存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,点M的坐标为:(2,0)或(6,0)或(,0)或(,0).
23、(1)见解析;(2)
24、(1)①垂直,相等;②见解析;(2)见解析.
25、(1)y=-x2+4x;(2)点P不在直线MB上,理由见解析;②当t=时,以点P,N,C,D为顶点的多边形面积有最大值,这个最大值为.
26、(1);(2)值有或
四川省武胜县2023-2024学年九上数学期末学业水平测试模拟试题含答案: 这是一份四川省武胜县2023-2024学年九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=ax2+bx+c,将二次函数化成的形式为,如图,若点P在反比例函数y=等内容,欢迎下载使用。
四川省广元中学2023-2024学年九上数学期末学业水平测试模拟试题含答案: 这是一份四川省广元中学2023-2024学年九上数学期末学业水平测试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,sin60°的值是,抛物线的开口方向是等内容,欢迎下载使用。
四川省乐山七中学2023-2024学年九上数学期末学业水平测试试题含答案: 这是一份四川省乐山七中学2023-2024学年九上数学期末学业水平测试试题含答案,共9页。试卷主要包含了下列事件中,必然发生的为等内容,欢迎下载使用。