四川省巴中市名校2023-2024学年九年级数学第一学期期末学业水平测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.下列事件是必然事件的是( )
A.任意购买一张电影票,座号是“7排8号”B.射击运动员射击一次,恰好命中靶心
C.抛掷一枚图钉,钉尖触地D.13名同学中,至少2人出生的月份相同
2.下列不是一元二次方程的是( )
A.B.C.D.
3.设,则代数式的值为( )
A.-6B.-5C.D.
4.求二次函数的图象如图所示,其对称轴为直线,与轴的交点为、,其中,有下列结论:①;②;③;④;⑤;其中,正确的结论有( )
A.5B.4C.3D.2
5.下列图形中的角是圆周角的是( )
A.B.
C.D.
6.将二次函数的图象向右平移2个单位,再向下平移3个单位,得到的函数图象的表达式是( )
A.B.
C.D.
7.关于x的一元二次方程x2+bx﹣10=0的一个根为2,则b的值为( )
A.1B.2C.3D.7
8.如图,PA,PB分别与⊙O相切于A、B两点.直线EF切⊙O于C点,分别交PA、PB于E、F,且PA=1.则△PEF的周长为( )
A.1B.15C.20D.25
9.如图,A、C、B是⊙O上三点,若∠AOC=40°,则∠ABC的度数是( ).
A.10°B.20°C.40°D.80°
10.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为( )
A.B.C.D.
11.在平面直角坐标系中,点(﹣3,2)关于原点对称的点是( )
A.(2,﹣3)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)
12.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则△PQD的面积为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第7个小三角形的面积为_________________
14.如图,,分别是边,上的点,,若,,,则______.
15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2x﹣3,求这个“果圆”被y轴截得的线段CD的长.
16.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为xn,则xn+xn+1= .
17.2019年元旦前,无为米蒂广场开业期间,某品牌服装店举行购物酬宾抽奖活动,抽奖箱内共有15张奖券,4张面值100元,5张面值200元,6张面值300元,小明从中任抽2张,则中奖总值至少300元的概率为_____.
18.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).
三、解答题(共78分)
19.(8分)已知为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.
(1)求点A的坐标(用m表示);
(2)求抛物线的解析式;
(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.
20.(8分)如图,某中学九年级“智慧之星”数学社团的成员利用周末开展课外实践活动,他们要测量中心公园内的人工湖中的两个小岛,间的距离.借助人工湖旁的小山,某同学从山顶处测得观看湖中小岛的俯角为,观看湖中小岛的俯角为.已知小山的高为180米,求小岛,间的距离.
21.(8分)如图,一次函数的图象与反比例函数的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(- 3,4),点B的坐标为(6,n).
(1)求该反比例函数和一次函数的解析式;
(2)连接OB,求△AOB 的面积;
(3)在x轴上是否存在点P,使△APC是直角三角形. 若存在,求出点P的坐标;若不存在,请说明理由.
22.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣1,1),B(﹣4,1),C(﹣1,3).
(1)作出△ABC关于y轴对称的△A1B1C1,并写出C1的坐标;
(1)画出△ABC绕C点顺时针旋转90°后得到的△A1B1C1.
23.(10分) “今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,问FH多少里?
24.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.
(1)求袋子中白球的个数;(请通过列式或列方程解答)
(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
25.(12分)如图是由6个形状、大小完全相同的小矩形组成的,小矩形的顶点称为格点.已知小矩形较短边长为1,的顶点都在格点上.
(1)用无刻度的直尺作图:找出格点,连接,使;
(2)在(1)的条件下,连接,求的值.
26.(12分)已知反比例函数为常数,)的图象经过两点.
(1)求该反比例函数的解析式和的值;
(2)当时,求的取值范围;
(3)若为直线上的一个动点,当最小时,求点的坐标.
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、A
4、C
5、C
6、C
7、C
8、C
9、B
10、A
11、D
12、D
二、填空题(每题4分,共24分)
13、
14、1
15、这个“果圆”被y轴截得的线段CD的长3+.
16、.
17、.
18、一4
三、解答题(共78分)
19、(1)(3﹣m,0);(2);(3)见解析
20、小岛,间的距离为米.
21、(1)反比例函数的解析式为y=﹣ ; 一次函数的解析式为y=﹣x+2; (2);(3)存在,满足条件的P点坐标为(﹣3,0)、(﹣,0).
22、(1)见解析,(1,3);(1)见解析
23、1.05里
24、(1)袋子中白球有2个;(2)见解析, .
25、(1)答案见解析;(2).
26、(1);(2)当时, 的取值范围是;(3)点的坐标为.
西藏林芝地区名校2023-2024学年九上数学期末学业水平测试模拟试题含答案: 这是一份西藏林芝地区名校2023-2024学年九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列事件中,是必然事件的是等内容,欢迎下载使用。
甘肃省定西市名校2023-2024学年数学九年级第一学期期末学业水平测试模拟试题含答案: 这是一份甘肃省定西市名校2023-2024学年数学九年级第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了化简的结果是,下列函数中属于二次函数的是等内容,欢迎下载使用。
山东省济宁市名校2023-2024学年数学九年级第一学期期末学业水平测试模拟试题含答案: 这是一份山东省济宁市名校2023-2024学年数学九年级第一学期期末学业水平测试模拟试题含答案,共7页。试卷主要包含了已知二次函数y=a等内容,欢迎下载使用。