甘肃省定西市名校2023-2024学年数学九年级第一学期期末学业水平测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.正方形ABCD内接于⊙O,若⊙O的半径是,则正方形的边长是( )
A.1B.2C. D.2
2.函数与的图象如图所示,有以下结论:①b2-4c>1;②b+c=1;③3b+c+6=1;④当1<<3时,<1.其中正确的个数为( )
A.1个B.2个C.3个D.4个
3.关于的一元二次方程有两个实数根,则的取值范围是( )
A.B.C.且D.且
4.化简的结果是( )
A.B.C.D.
5.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是( )
A.B.
C.D.
6.下列函数中属于二次函数的是( )
A.y=xB.y=2x2-1C.y=D.y=x2++1
7.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是( )
A.
B.
C.
D.
8.如图,AB是⊙O的直径,弦CD交AB于点E,且E是CD的中点,∠CDB=30°,CD=6,则阴影部分面积为( )
A.πB.3πC.6πD.12π
9.已知关于的方程,若,则该方程一定有一个根为( )
A.-1B.0C.1D.1或-1
10.如图,将绕点按逆时针方向旋转后得到,若,则的度数是( )
A.B.C.D.
11.下列图形中既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
12.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为( )
A.2πB.4πC.5πD.6π
二、填空题(每题4分,共24分)
13.如图,小颖周末晚上陪父母在斜江绿道上散步,她由路灯下A处前进3米到达B处时,测得影子BC长的1米,已知小颖的身高1.5米,她若继续往前走3米到达D处,此时影子DE长为____米.
14.已知:如图,点是边长为的菱形对角线上的一个动点,点是边的中点,且,则的最小值是_______.
15.若是方程的一个根,则式子的值为__________.
16.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,若小华的身高为1.6米,那么路灯离地面的高度是_____米.
17.一个口袋中有红球、白球共10个,这些球除色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有60次摸到红球.请你估计这个口袋中有_____个白球.
18.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBn∁nCn+1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B₃的坐标是_____,点Bn的坐标是_____.
三、解答题(共78分)
19.(8分)如图,破残的圆形轮片上,弦AB的垂直平分线交AB于C,交弦AB于D.
(1)求作此残片所在的圆(不写作法,保留作图痕迹);
(2)若AB=24cm,CD=8cm,求(1)中所作圆的半径.
20.(8分)计算:3tan30°− tan45°+ 2sin60°
21.(8分)如图,在等腰中,,以为直径作交于点,过点作,垂足为.
(1)求证:是的切线.
(2)若,,求的长.
22.(10分)如图,AB是⊙O的直径,点P是AB上一点,且点P是弦CD的中点.
(1)依题意画出弦CD,并说明画图的依据;(不写画法,保留画图痕迹)
(2)若AP=2,CD=8,求⊙O的半径.
23.(10分)某商场经营某种品牌的玩具,购进时的单价30元,根据市场调查:在一段时间内,销售单价是40元时,销售是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)若设该种品脚玩具上x元(0<x<60)元,销售利润为w元,请求出w关于x的函数关系式;
(2)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润.
24.(10分)如图,抛物线y=﹣x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分别交x轴、线段AC于点E、F.
(1)求抛物线的对称轴及点A的坐标;
(2)连结AD,CD,求△ACD的面积;
(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.
25.(12分)如图,抛物线的表达式为y=ax2+4ax+4a-1(a≠0),它的图像的顶点为A,与x轴负半轴相交于点B、点C(点B在点C左侧),与y轴交于点D,连接AO交抛物线于点E,且S△AEC:S△CEO=1:3.
(1)求点A的坐标和抛物线表达式;
(2)在抛物线的对称轴上是否存在一点P,使得△BDP的内心也在对称轴上,若存在,求点P的坐标;若不存在,请说明理由;
(3)连接BD,点Q是y轴左侧抛物线上的一点,若以Q为圆心,为半径的圆与直线BD相切,求点Q的坐标.
26.(12分)某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为每千克8元,下面是他们在活动结束后的对话.
小丽;如果以每千克10元的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以每千克13元的价格销售,那么每天可获取利润750元.
(1)已知该水果每天的销售量y(千克)与销售单价x(元)之间存在一次的函数关系,请根据他们的对话,判决该水果每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系,并求出这个函数关系式;
(2)设该超市销售这种水果每天获取的利润为W(元),求W(元)与x(元)之间的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?
(3)当销售利润为600元并且尽量减少库存时,销售单价为每千克多少元?
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、D
4、D
5、B
6、B
7、B
8、D
9、C
10、A
11、C
12、B
二、填空题(每题4分,共24分)
13、2
14、
15、1
16、6.1
17、1
18、 (4,7) (2n﹣1,2n﹣1)
三、解答题(共78分)
19、(1)答案见解析;(2)13cm
20、
21、(1)见解析;(2)
22、(1)画图见解析,依据:平分弦(非直径)的直径垂直于弦;(2)⊙O的半径为1.
23、(1)w=﹣10x2+1300x﹣30000;(2)最大利润是1元,此时玩具的销售单价应定为65元.
24、(1)抛物线的对称轴x=1,A(6,0);(1)△ACD的面积为11;(3)点P的坐标为(1,1)或(1,6)或(1,3).
25、(1)抛物线表达式为y=x2+4x+3 ;(2)P(-2,-3);(3)Q(-4,3).
26、(1)y=﹣50x+800(x>0);(2)单价为12元时,每天可获得的利润最大,最大利润是800元;(3)每千克10元或14元.
山东省济宁市名校2023-2024学年数学九年级第一学期期末学业水平测试模拟试题含答案: 这是一份山东省济宁市名校2023-2024学年数学九年级第一学期期末学业水平测试模拟试题含答案,共7页。试卷主要包含了已知二次函数y=a等内容,欢迎下载使用。
2023-2024学年河北省唐山市名校数学九年级第一学期期末学业水平测试模拟试题含答案: 这是一份2023-2024学年河北省唐山市名校数学九年级第一学期期末学业水平测试模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,下列是一元二次方程的是等内容,欢迎下载使用。
2023-2024学年广东省珠海市名校数学九年级第一学期期末学业水平测试模拟试题含答案: 这是一份2023-2024学年广东省珠海市名校数学九年级第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。