山东省鄄城县联考2023-2024学年九上数学期末考试试题含答案
展开
这是一份山东省鄄城县联考2023-2024学年九上数学期末考试试题含答案,共8页。试卷主要包含了反比例函数,下列各点在反比例函数图象上的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.计算的结果是
A.﹣3B.3C.﹣9D.9
2.一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为( )
A.30°B.45°C.60°D.75°
3.反比例函数(x<0)如图所示,则矩形OAPB的面积是( )
A.-4B.-2C.2D.4
4.抛物线y=x2+2x-2最低点坐标是( )
A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3)
5.已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是( )
A.B.C.D.
6.同学们参加综合实践活动时,看到木工师傅用“三弧法”在板材边角处作直角,其作法是:如图:
(1)作线段AB,分别以点A,B为圆心,AB长为半径作弧,两弧交于点C;
(2)以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D;
(3)连接BD,BC.
根据以上作图过程及所作图形,下列结论中错误的是( )
A.∠ABD=90°B.CA=CB=CDC.sinA=D.csD=
7.下列各点在反比例函数图象上的是( )
A.B.C.D.
8.如图,中,,将绕着点旋转至,点的对应点点恰好落在边上.若,,则的长为( )
A.B.C.D.
9.已知四边形ABCD是平行四边形,下列结论中正确的有( )
①当AB=BC时,四边形ABCD是菱形;
②当AC⊥BD时,四边形ABCD是菱形;
③当∠ABC=90°时,四边形ABCD是菱形:
④当AC=BD时,四边形ABCD是菱形;
A.3个B.4个C.1个D.2个
10.下表是二次函数y=ax2+bx+c的部分x,y的对应值:
可以推断m的值为( )
A.﹣2B.0C.D.2
11.如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是( )
A.64B.16C.24D.32
12.下列命题中,是真命题的是
A.两条对角线互相平分的四边形是平行四边形
B.两条对角线相等的四边形是矩形
C.两条对角线互相垂直的四边形是菱形
D.两条对角线互相垂直且相等的四边形是正方形
二、填空题(每题4分,共24分)
13.方程的根是__________.
14.半径为10cm的半圆围成一个圆锥,则这个圆锥的高是__cm.
15. “今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FE⊥AD,EG=15里,HG经过A点,则FH=__里.
16.已知一次函数y=ax+b与反比例函数y=的图象相交于A(4,2),B(-2,m)两点,则一次函数的表达式为____________.
17.袋子中有10个除颜色外完全相同的小球在看不到球的条件下,随机地从袋中摸出一个球,记录颜色后放回,将球摇匀重复上述过程1500次后,共到红球300次,由此可以估计袋子中的红球个数是_____.
18.一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是______.
三、解答题(共78分)
19.(8分)如图,是⊙的直径,是的中点,弦于点,过点作交的延长线于点.
(1)连接,求;
(2)点在上,,DF交于点.若,求的长.
20.(8分)某食品代理商向超市供货,原定供货价为元/件,超市售价为元/件.为打开市场超市决定在第一季度对产品打八折促销,第二季度再回升个百分点,为保证超市利润,代理商承诺在供货价基础上向超市返点试问平均每季度返多少个百分点,半年后超市的销售利润回到开始供货时的水平?
21.(8分)如图,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
22.(10分)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.
(1)当点B于点O重合的时候,求三角板运动的时间;
(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.
①求证:EF平分∠AEC;
②求EF的长.
23.(10分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.
(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;
(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.
24.(10分)我们把两条中线互相垂直的三角形称为“中垂三角形”. 如图1,图2,图3中,是的中线,,垂足为点,像这样的三角形均为“中垂三角形. 设.
(1)如图1,当时,则_________,__________;
(2)如图2,当时,则_________,__________;
归纳证明
(3)请观察(1)(2)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;
拓展应用
(4)如图4,在中,分别是的中点,且. 若,,求的长.
25.(12分)如图,一次函数与反比例函数的图象交于,点两点,交轴于点.
(1)求、的值.
(2)请根据图象直接写出不等式的解集.
(3)轴上是否存在一点,使得以、、三点为顶点的三角形是为腰的等腰三角形,若存在,请直接写出符合条件的点的坐标,若不存在,请说明理由.
26.(12分)如图,在中,,是边上的高,是边上的一个动点(不与,重合),,,垂足分别为,.
(1)求证:;
(2)与是否垂直?若垂直,请给出证明,若不垂直,请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、D
4、D
5、B
6、D
7、B
8、A
9、D
10、C
11、D
12、A
二、填空题(每题4分,共24分)
13、,
14、
15、1.1
16、y=x-1
17、2
18、
三、解答题(共78分)
19、(1);(2).
20、代理商平均每个季度向超市返个百分点,半年后超市的利润回到开始供货时的水平.
21、(1)y=﹣x2+x+2(2)(,4)或(,)或(,﹣)(3)(2,1)
22、(1)2s(2)①证明见解析,②
23、(1);(2)列表见解析,.
24、(1) ,;(2),;(3),证明见解析;(4)
25、 (1),;(2)或;(3)存在,点的坐标是或或.
26、(1)证明见解析;(2)与垂直,证明见解析.
x
…
﹣1
﹣
0
1
2
3
…
y
…
2
m
﹣1
﹣
﹣2
﹣
﹣1
2
…
相关试卷
这是一份山东省菏泽市鄄城县2023-2024学年数学九上期末考试试题含答案,共8页。试卷主要包含了如图所示的两个三角形,两个相似多边形的面积之比是1,方程的根的情况是等内容,欢迎下载使用。
这是一份山东省聊城东昌府区六校联考2023-2024学年九上数学期末考试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份山东省滨州沾化区六校联考2023-2024学年九上数学期末考试模拟试题含答案,共8页。