山东省乐德州市夏津县2023-2024学年数学九上期末考试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86分,方差如下表,你认为派谁去参赛更合适( )
A.甲B.乙C.丙D.丁
2.1米长的标杆直立在水平的地面上,它在阳光下的影长为0.8米;在同一时刻,若某电视塔的影长为100米,则此电视塔的高度应是( )
A.80米B.85米C.120米D.125米
3.,是的两条切线,,为切点,直线交于,两点,交于点,为的直径,下列结论中不正确的是( )
A.B.C.D.
4.如图,弦和相交于内一点,则下列结论成立的是( )
A.
B.
C.
D.
5.如图,将绕点,按逆时针方向旋转120°,得到(点的对应点是点,点的对应点是点),连接.若,则的度数为( )
A.15°B.20 °C.30°D.45°
6.如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是( )
A.35°B.55°C.65°D.70°
7.成语“水中捞月”所描述的事件是( ).
A.必然事件B.随机事件C.不可能事件D.无法确定
8.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
观察上表,得出下面结论:①抛物线与x轴的一个交点为(3,0); ②函数y=ax2+bx+C的最大值为6;③抛物线的对称轴是x=;④在对称轴左侧,y随x增大而增大.其中正确有( )
A.1个B.2个C.3个D.4个
9.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是
A.相切B.相交C.相离D.不能确定
10.在Rt△ABC中,csA= ,那么sinA的值是( )
A.B.C.D.
11.下列说法错误的是
A.必然事件发生的概率为B.不可能事件发生的概率为
C.有机事件发生的概率大于等于、小于等于D.概率很小的事件不可能发生
12.如图,是的直径,点,在上,若,则的度数为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.已知函数(为常数),若从中任取值,则得到的函数是具有性质“随增加而减小”的一次函数的概率为___________.
14.已知:如图,在中,于点,为的中点,若,,则的长是_______.
15.如图,已知⊙的半径为1,圆心在抛物线上运动,当⊙与轴相切时,圆心的坐标是___________________.
16.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.
17.如图已知二次函数y1=x2+c与一次函数y2=x+c的图象如图所示,则当y1<y2时x的取值范围_____.
18.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为______________.
三、解答题(共78分)
19.(8分)如图,在△ABC中,D为BC边上的一点,且AC=,CD=4,BD=2,求证:△ACD∽△BCA.
20.(8分)如图1,抛物线与x轴交于A、B两点(点A在x轴的负半轴),与y轴交于点C. 抛物线的对称轴交抛物线于点D,交x轴于点E,点P是线段DE上一动点(点P不与DE两端点重合),连接PC、PO.
(1) 求抛物线的解析式和对称轴;
(1) 求∠DAO的度数和△PCO的面积;
(3) 在图1中,连接PA,点Q 是PA 的中点.过点P作PF⊥AD于点F,连接QE、QF、EF得到图1.试探究: 是否存在点P,使得 ,若存在,请求点P的坐标;若不存在,请说明理由.
21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现阶梯上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水平距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠1=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)
(1)求梯步的高度MO;
(2)求树高MN.
22.(10分)在一个不透明的袋子中装有大小、形状完全相同的三个小球,上面分别标有1,2,3三个数字.
(1)从中随机摸出一个球,求这个球上数字是奇数的概率是 ;
(2)从中先随机摸出一个球记下球上数字,然后放回洗匀,接着再随机摸出一个,求这两个球上的数都是奇数的概率(用列表或树状图方法)
23.(10分)已知如图AB ∥EF∥ CD,
(1)△CFG∽△CBA吗?为什么?
(2)求 的值.
24.(10分)某商场经销-种进价为每千克50元的水产品,据市场分析,每千克售价为60元时,月销售量为,销售单价每涨1元时,月销售量就减少,针对这种情况,请解答以下问题:
(1)当销售单价定为65元时,计算销售量和月销售利润;
(2)若想在月销售成本不超过12000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
25.(12分)如图,在平面直角坐标系中,一次函数与轴和轴分别交于点,点,与反比例函数在第一象限的图象交于点,点,且点的坐标为.
(1)求一次函数和反比例函数解析式;
(2)若的面积是8,求点坐标.
26.(12分)1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径米是其两腿迈出的步长之差厘米的反比例函数,其图象如图所示.
请根据图象中的信息解决下列问题:
(1)求与之间的函数表达式;
(2)当某人两腿迈出的步长之差为厘米时,他蒙上眼睛走出的大圆圈的半径为______米;
(3)若某人蒙上眼睛走出的大圆圈的半径不小于米,则其两腿迈出的步长之差最多是多少厘米?
参考答案
一、选择题(每题4分,共48分)
1、A
2、D
3、B
4、C
5、C
6、B
7、C
8、C
9、B
10、B
11、D
12、C
二、填空题(每题4分,共24分)
13、
14、
15、或或或
16、y=-5(x+2)2-1
17、0<x<1.
18、3
三、解答题(共78分)
19、证明见解析.
20、(1);;(1)45°;;(3)存在,
21、(1)4米;(2)(14+4)米.
22、(1);(2)见解析,
23、(1)△CFG∽△CBA,见解析;(2)
24、(1)销售量:450kg;月销售利润:6750元;(2)销售单价定为90元时,月销售利润达到8000元,且销售成本不超过12000元
25、(1),;(2).
26、(1);(2);(3)步数之差最多是厘米,
选手
甲
乙
丙
丁
方差
1.5
2.6
3.5
3.68
x
…
-2
-1
0
1
2
…
y
…
0
4
6
6
4
…
山东省德州市夏津县2023-2024学年九年级上学期期末数学试题(含答案): 这是一份山东省德州市夏津县2023-2024学年九年级上学期期末数学试题(含答案),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
山东省德州市夏津县2023-2024学年数学九上期末综合测试模拟试题含答案: 这是一份山东省德州市夏津县2023-2024学年数学九上期末综合测试模拟试题含答案,共8页。
山东省德州市经开区2023-2024学年九上数学期末调研模拟试题含答案: 这是一份山东省德州市经开区2023-2024学年九上数学期末调研模拟试题含答案,共8页。试卷主要包含了下列运算中,正确的是等内容,欢迎下载使用。