2024-2025学年山东省德州市八校九上数学开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形是中心对称图形,但不是轴对称图形的是( )
A.B.C.D.
2、(4分)下列二次根式是最简二次根式的是( )
A. B. C. D.
3、(4分)下列定理中,没有逆定理的是( )
A.两直线平行,同位角相等
B.全等三角形的对应边相等
C.全等三角形的对应角相等
D.在角的内部,到角的两边距离相等的点在角的平分线上
4、(4分)如图,在中,,,则的度数是( )
A.B.C.D.
5、(4分)反比例函数图象上有三个点,,,若,则的大小关系是( )
A.B.C.D.
6、(4分)关于一次函数,下列结论正确的是( )
A.图象过点B.图象与轴的交点是
C.随的增大而增大D.函数图象不经过第三象限
7、(4分)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于( )
A.10m B.12m C.12.4m D.12.32m
8、(4分)课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用表示,小丽的位置用表示,那么你的位置可以表示成( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平行四边形中,连接,且,过点作于点,过点作于点,在的延长线上取一点,,若,则的度数为____________.
10、(4分)若,则的值是________
11、(4分)当m=_____时,是一次函数.
12、(4分)如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是_____.
13、(4分)在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠BCA的外角平分线于F.
(1)请猜测OE与OF的大小关系,并说明你的理由;
(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;
(3)点O运动到何处且△ABC满足什么条件时,四边形AECF是正方形?(写出结论即可)
15、(8分)如图,矩形中,,对角线、交于点,的平分线分别交、于点、,连接.
(l)求的度数;
(2)若,求的面积;
(3)求.
16、(8分)已知关于x的方程 (m-1)x-mx+1=0。
(1)证明:不论m为何值时,方程总有实数根;
(2)若m为整数,当m为何值时,方程有两个不相等的整数根。
17、(10分)(1)用配方法解方程:;
(2)用公式法解方程:.
18、(10分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,6),请在所给网格区域(含边界)上按要求画整点四边形.
(1)在图1中画一个整点四边形ABCD,四边形是轴对称图形,且面积为10;
(2)在图2中画一个整点四边形ABCD,四边形是中心对称图形,且有两个顶点各自的横坐标比纵坐标小1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在Rt△ABC中,∠A=30°,斜边AB=12,CD⊥AB于D,则AD=_____________.
20、(4分)若关于的方程有增根,则的值是________.
21、(4分)如图,直线与的交点坐标为,当时,则的取值范围是__________.
22、(4分)如图,正方形ABCD中,,点E、F分别在边AD和边BC上,且,动点P、Q分别从A、C两点同时出发,点P自A→F→B方向运动,点Q自C→D→E→C方向运动若点P、Q的运动速度分别为1cm/s,3cm/s,设运动时间为,当A 、C、P、Q四点为顶点的四边形是平行四边形时则t= ________________
23、(4分)不等式的正整数解的和______;
二、解答题(本大题共3个小题,共30分)
24、(8分)已知x=2+,求代数式的值.
25、(10分)在中,D,E,F分别是三边,,上的中点,连接,,,,已知.
(1)观察猜想:如图,当时,①四边形的对角线与的数量关系是________;②四边形的形状是_______;
(2)数学思考:如图,当时,(1)中的结论①,②是否发生变化?若发生变化,请说明理由;
(3)拓展延伸:如图,将上图的点A沿向下平移到点,使得,已知,分别为,的中点,求四边形与四边形的面积比.
26、(12分)已知一次函数y=kx﹣4,当x=1时,y=﹣1.
(1)求此一次函数的解析式;
(1)将该函数的图象向上平移3个单位,求平移后的图象与x轴的交点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据轴对称图形和中心对称图形的定义解答即可.
【详解】
解:A.是中心对称图形,不是轴对称图形,故A符合题意;
B.是中心对称图形,也是轴对称图形,故B不符合题意;
C.是中心对称图形,也是轴对称图形,故C不符合题意;
D.是轴对称图形,不是中心对称图形,故D不合题意.
故选A.
本题考查了中心对称和轴对称图形的定义.解题的关键是掌握中心对称和轴对称图形的定义.
2、C
【解析】A选项的被开方数中含有分母;B、D选项的被开方数中含有未开尽方的因数;因此这三个选项都不符合最简二次根式的要求.所以本题的答案应该是C.
解:A、=;B、=2;D、=2;
因此这三个选项都不是最简二次根式,故选C.
3、C
【解析】
写出各个定理的逆命题,判断是否正确即可.
【详解】
解:两直线平行,同位角相等的逆命题是同位角相等,两直线平行,正确,A有逆定理;
全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确,B有逆定理;
全等三角形的对应角相等的逆命题是对应角相等的两个三角形全等,错误,C没有逆定理;
在角的内部,到角的两边距离相等的点在角的平分线上的逆命题是角的平分线上的点到角的两边距离相等,正确,D有逆定理;
故选:C.
本题考查的是命题与定理,属于基础知识点,比较简单.
4、B
【解析】
由三角形内角和得到∠CBD的度数,由AD∥BC即可得到答案.
【详解】
解:∵,,
∴∠CBD=180°-50°-55°=75°,
在中,AD∥BC,
∴∠ADB=∠CBD=75°.
故选择:B.
本题考查了三角形内角和,平行线的性质,解题的关键是熟练掌握三角形内角和与平行线的性质.
5、A
【解析】
反比例函数图象在一三象限,在每个象限内,随的增大而减小,点,,,,,在图象上,且,可知点,,,在第三象限,而,在第一象限,根据函数的增减性做出判断即可.
【详解】
解:反比例函数图象在一三象限,随的增大而减小,
又点,,,,,在图象上,且,
点,,,在第三象限,,
点,在第一象限,,
,
故选:.
考查反比例函数的图象和性质,当时,在每个象限内随的增大而减小,同时要注意在同一个象限内,不同象限的要分开比较,利用图象法则更直观.
6、D
【解析】
A、把点的坐标代入关系式,检验是否成立;
B、把y=0代入解析式求出x,判断即可;
C、根据一次项系数判断;
D、根据系数和图象之间的关系判断.
【详解】
解:A、当x=1时,y=1.所以图象不过(1,−1),故错误;
B、把y=0代入y=−2x+3,得x=,所以图象与x轴的交点是(,0),故错误;
C、∵−2<0,∴y随x的增大而减小,故错误;
D、∵−2<0,3>0,∴图象过一、二、四象限,不经过第三象限,故正确.
故选:D.
本题主要考查了一次函数的图象和性质.常采用数形结合的思想求解.
7、B
【解析】试题分析:由题意可得:AB=1.5m,BC=0.4m,DC=4m,△ABC∽△EDC,则,即,解得:DE=12,故选B.
考点:相似三角形的应用.
8、C
【解析】
以小明为原点建立平面直角坐标系,即可知小亮的坐标.
【详解】
解:由题意可得,以小明为原点建立平面直角坐标系,则小亮的位置为.
故答案为C
本题考查了平面直角坐标系,用平面直角坐标系表示位置关键是根据已知条件确定平面直角坐标系.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、25
【解析】
根据平行四边形的性质得到BD=BA,根据全等三角形的性质得到AM=DN,推出△AMP是等腰直角三角形,得到∠MAP=∠APM=45°,根据三角形的外角的性质可得出答案.
【详解】
解:在平行四边形ABCD中,
∵AB=CD,
∵BD=CD,
∴BD=BA,
又∵AM⊥BD,DN⊥AB,
∴∠AMB=∠DNB=90°,
在△ABM与△DBN中
,
∴△ABM≌△DBN(AAS),
∴AM=DN,
∵PM=DN,
∴AM=PM,
∴△AMP是等腰直角三角形,
∴∠MAP=∠APM=45°,
∵AB∥CD,
∴∠ABD=∠CDB=70°,
∴∠PAB=∠ABD-∠P=25°,
故答案为:25.
本题考查了平行四边形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,熟练掌握性质和判定是解题的关键.
10、.
【解析】
解:∵﹣=2,∴a﹣b=﹣2ab,∴原式====﹣.故答案为﹣.
11、3或0
【解析】
根据一次函数的定义即可求解.
【详解】
依题意得m-3≠0,2m+1=1或m-3=0,
解得m=0或m=3,
故填:3或0.
此题主要考查一次函数的定义,解题的关键是熟知一次函数的特点.
12、1
【解析】
过点C作CF⊥AB于F,由角平分线的性质得CD=CF,CE=CF,于是可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.
【详解】
解:如图,过点C作CF⊥AB于F,
∵AC,BC分别平分∠BAD,∠ABE,
∴CD=CF,CE=CF,
∵AC=AC,BC=BC,
∴△ADC≌△AFC,△CBE≌△CBF,
∴AF=AD=5,BF=BE=2,
∴AB=AF+BF=1.
故答案是:1.
本题考查全等三角形的判定和性质,角平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.
13、2+
【解析】
试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.
∵PE⊥AB,AB=2,半径为2,
∴AE=AB=,PA=2, 根据勾股定理得:PE=1,
∵点A在直线y=x上,
∴∠AOC=45°,
∵∠DCO=90°,
∴∠ODC=45°,
∴△OCD是等腰直角三角形,
∴OC=CD=2,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD=
∵⊙P的圆心是(2,a),
∴a=PD+DC=2+.
本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.
三、解答题(本大题共5个小题,共48分)
14、(1)猜想:OE=OF,理由见解析;(2)见解析;(3)见解析.
【解析】
(1)猜想:OE=OF,由已知MN∥BC,CE、CF分别平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO.
(2)由(1)得出的EO=CO=FO,点O运动到AC的中点时,则由EO=CO=FO=AO,所以这时四边形AECF是矩形.
(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,所以四边形AECF是正方形.
【详解】
(1)猜想:OE=OF,理由如下:
∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,
又∵CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF=∠GCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.
(2)当点O运动到AC的中点时,四边形AECF是矩形.
∵当点O运动到AC的中点时,AO=CO,
又∵EO=FO,∴四边形AECF是平行四边形,
∵FO=CO,∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.
(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.
∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,
已知MN∥BC,当∠ACB=90°,则
∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.
此题考查的知识点是正方形和矩形的判定及角平分线的定义,解题的关键是由已知得出EO=FO,然后根据(1)的结论确定(2)(3)的条件.
15、(1)75°;(2);(3)
【解析】
(1)由矩形的性质可得AB∥CD,AO=CO=BO=DO,由角平分线的性质和平行线的性质可求BC=BE=BO,即可求解;
(2)过点H作FH⊥BC于F,由直角三角形的性质可得FH=BF,BC=BF+BF=1,可求BH的长,由三角形面积公式可求△BCH的面积;
(3)过点C作CN⊥BO于N,由直角三角形的性质可求BC=BF+BF=BO=BE,OH=OB-BH=BF-BF,CN=BC=BF,即可求解.
【详解】
解:(1)∵四边形ABCD是矩形
∴AB∥CD,AO=CO=BO=DO,
∴∠DCE=∠BEC,
∵CE平分∠BCD
∴∠BCE=∠DCE=45°,
∴∠BCE=∠BEC=45°
∴BE=BC
∵∠BAC=30°,AO=BO=CO
∴∠BOC=60°,∠OBA=30°
∵∠BOC=60°,BO=CO
∴△BOC是等边三角形
∴BC=BO=BE,且∠OBA=30°
∴∠BOE=75°
(2)如图,过点H作FH⊥BC于F,
∵△BOC是等边三角形
∴∠FBH=60°,FH⊥BC
∴BH=2BF,FH=BF,
∵∠BCE=45°,FH⊥BC
∴CF=FH=BF
∴BC=BF+BF=1
∴BF=,
∴FH=,
∴S△BCH=×BC×FH=;
(3)如图,过点C作CN⊥BO于N,
∵△BOC是等边三角形
∴∠FBH=60°,FH⊥BC
∴BH=2BF,FH=BF,
∵∠BCE=45°,FH⊥BC
∴CF=FH=BF
∴BC=BF+BF=BO=BE,
∴OH=OB-BH=BF-BF
∵∠CBN=60°,CN⊥BO
∴,
∴,
∴.
本题考查矩形的性质、等边三角形的判定与性质、等腰三角形的判定与性质;熟练掌握矩形的性质,证明△AOB是等边三角形是解决问题的关键.
16、(1)见解析;(2)m=0
【解析】
(1)分该方程为一元二次方程和一元一次方程展开证明即可。
(2)利用因式分解解该一元二次方程,求出方程的根,利用整数概念进行求值即可
【详解】
解:(1)当 时, 是关于x的一元二次方程。
∵不论m为何值时,(m﹣2)2≥0,
∴△≥0,
∴方程总有实数根;
当m=1时,是关于x的一元一次方程。
∴-x+1=0
∴x=1
∴方程有实数根x=1
∴不论m为何值时,方程总有实数根
(2)
分解因式得
解得:
∵方程有两个不相等的整数根
∴为整数,
∴ 且
∴m=0
本题考查了根的判别式,掌握方程与根的关系,及因式分解解一元二次方程,和整数的概念是解题的关键.
17、(1);;(2);
【解析】
(1)先把左边的4移项到右边成-4,再配方,两边同时加32,左边得到完全平方,再得出两个一元一次方程进行解答;
(2)先化成一元二次方程的一般式,得出a、b、c,计算b2-4ac判定根的情况,最后运用求根公式即可求解.
【详解】
解:(1)x2+6x+4=0
x2+6x=-4
x2+6x+9=-4+9
(x+3)2=5
;
(2)5x2-3x=x+1,
5x2-4x-1=0,
b2-4ac=(-4)2-4×5×(-1)=36,
,
本题主要考查了运用配方法、公式法解一元二次方程,运用公式法解方程时,要先把方程化为一般式,找到a、b、c的值,然后用b2-4ac判定根的情况,最后运用公式即可求解.
18、画图见解析.
【解析】
【分析】(1)结合网格特点以及轴对称图形有定义进行作图即可得;
(2)结合网格特点以及中心对称图形的定义按要求作图即可得.
【详解】(1)如图所示(答案不唯一);
(2)如图所示(答案不唯一).
【点睛】本题考查了作图,轴对称图形、中心对称图形等,熟知网格特点以及轴对称图形、中心对称图形的定义是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据30°角所对的直角边是斜边的一半,可得BC=6,然后利用勾股定理求出AC,再次利用30°所对的直角边的性质得到CD=AC,最后用勾股定理求出AD.
【详解】
∵在Rt△ABC中,∠A=30°,斜边AB=12,
∴BC=AB=6
∴AC=
∵在Rt△ACD中,∠A=30°
∴CD=AC=
∴AD=
故答案为:1.
本题考查含30°角的直角三角形的性质与勾股定理,熟练掌握30°角所对的直角边是斜边的一半是解题的关键.
20、.
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出未知字母的值.
【详解】
解:方程两边都乘x-2,得
∵方程有增根,
∴最简公分母x-2=0,即增根是x=2,
把x=2代入整式方程,得.
故答案为:.
考查了分式方程的增根,增根问题可按如下步骤进行:
①根据最简公分母确定增根的值;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
21、
【解析】
在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.
【详解】
解:∵直线l1:y1=k1x+a与直线l2:y2=k2x+b的交点坐标是(1,2),
∴当x=1时,y1=y2=2.
而当y1≤y2时,即时,x≤1.
故答案为:x≤1.
此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.
22、3s或6s
【解析】
根据两点速度和运动路径可知,点Q在EC上、点P在AF上或和点P在BC上时、点Q在AD上时,A、C、P、Q四点为顶点的四边形是平行四边形.根据平行四边形性质构造方程即可.
【详解】
由P、Q速度和运动方向可知,当Q运动EC上,P在AF上运动时,
若EQ=FP,A、C、P、Q四点为顶点的四边形是平行四边形
∴3t-7=5-t
∴t=3
当P、Q分别在BC、AD上时
若QD=BP,形A、C、P、Q四点为顶点的四边形是平行四边形
此时Q点已经完成第一周
∴4-[3(t-4)-4]=t-5+1
∴t=6
故答案为:3s或6s.
本题考查了正方形的性质,平行四边形的判定和性质,动点问题的分类讨论和三角形全等有关知识.解答时注意分析两个动点的相对位置关系.
23、3.
【解析】
先解出一元一次不等式,然后选取正整数解,再求和即可.
【详解】
解:解得;x<3,;则正整数解有2和1;
所以正整数解的和为3;故答案为3.
本题考查了解一元一次不等式组和正整数的概念,其关键在于选取正整数解.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
把代入代数式,再根据平方差公式、完全平方公式计算即可求解.
【详解】
解:
本题考查了二次根式的化简求值,解题的关键是掌握平方差公式、完全平方公式.
25、(1)①,②平行四边形;(2)结论①不变,结论②由平行四边形变为菱形,理由详见解析;(3)
【解析】
(1)根据三角形中位线定理,即可得出,进而得解;由三角形中位线定理得出DE∥AC, ,即可判定为平行四边形;
(2)由中位线定理得出,,,然后根据,得出,,即可判定平行四边形是菱形;
(3)首先设,,根据等腰直角三角形的性质,得出,进而得出,然后由三角形中位线定理得,,经分析可知:,且和互相垂直平分,即可得出四边形为正方形,又由,,,得出四边形为矩形,即可得出面积比.
【详解】
解:(1)①,②平行四边形;
由已知条件和三角形中位线定理,得
又∵
∴
②由三角形中位线定理得,
DE∥AC, ,
∴四边形是平行四边形;
(2)结论①不变,结论②由平行四边形变为菱形,
四边形是菱形的理由是:
∵,都是的中位线,
∴,
∴四边形是平行四边形
∵是的中位线,
∴
∵
∴,
∴
∴平行四边形是菱形.
(3)设,
当,是等腰直角三角形,
∴
∴
由三角形中位线定理得,,
∴,且和互相垂直平分
∴四边形为正方形,
∵,EF⊥AD,
∴
∴
又∵,
∴四边形为矩形,
∴,
∴所求面积比为
(1)此题主要考查三角形中位线定理的应用,利用其进行等式转换和平行四边形的判定,即可得解;
(2)此题主要考查菱形的判定,熟练掌握,即可解题;
(3)此题主要考查正方形和矩形的判定,关键是利用正方形和矩形的面积关系式,即可解题.
26、(1)y=x﹣4;(1)(1,0)
【解析】
(1)根据待定系数法求出函数的解析式;
(1)利用一次函数的平移的性质:上加下减,左加右减进行变形即可.
【详解】
(1)把x=1,y=-1代入y=kx-4可得
1k-4=-1
解得k=1
即一次函数的解析式为y=x-4
(1)根据一次函数的平移的性质,可得y=x-4+3=x-1
即平移后的一次函数的解析式为y=x-1
因为与x轴的交点y=0
可得x=1
所以与x轴的交点坐标为(1,0).
此题主要考查了一次函数的图像与性质,关键是利用待定系数法求出函数的解析式.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年江苏省镇江丹徒区七校联考数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年江苏省镇江丹徒区七校联考数学九上开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省怀化市九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年湖南省怀化市九上数学开学质量跟踪监视模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省武汉江夏区五校联考九上数学开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年湖北省武汉江夏区五校联考九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。