北京石景山2023-2024学年数学九上期末监测模拟试题含答案
展开
这是一份北京石景山2023-2024学年数学九上期末监测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔,一元二次方程x等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.学校体育室里有6个箱子,分别装有篮球和足球(不混装),数量分别是8,9,16,20,22,27,体育课上,某班体育委员拿走了一箱篮球,在剩下的五箱球中,足球的数量是篮球的2倍,则这六箱球中,篮球有( )箱.
A.2B.3C.4D.5
2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )
A.B.C.D.
3.如图①,在矩形中,,对角线相交于点,动点由点出发,沿向点运动.设点的运动路程为,的面积为,与的函数关系图象如图②所示,则边的长为( ).
A.3B.4C.5D.6
4.下列图形中,既是轴对称图形又是中心对称图形的有( )
A.1个B.2个C.3个D.4个
5.如图,该几何体的主视图是( )
A.B.C.D.
6.如图,在△ABC中,∠BAC=65°,将△ABC绕点A逆时针旋转,得到△AB'C',连接C'C.若C'C∥AB,则∠BAB'的度数为( )
A.65°B.50°C.80°D.130°
7.如图,已知正五边形内接于,连结,则的度数是( )
A.B.C.D.
8.已知二次函数的图象与轴有两个不同的交点,其横坐标分别为若且则( )
A.B.C.D.
9.一元二次方程x(3x+2)=6(3x+2)的解是( )
A.x=6B.x=﹣C.x1=6,x2=﹣D.x1=﹣6,x2=
10.在平面直角坐标系中,将关于轴的对称点绕原点逆时针旋转得到,则点的坐标是( )
A.B.C.D.
11.如图,在菱形ABCD中,点E,F分别在AB,CD上,且,连接EF交BD于点O连接AO.若,,则的度数为( )
A.50°B.55°C.65°D.75°
12.下列不是一元二次方程的是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系:h=20t-5t2,当小球达到最高点时,小球的运动时间为第_________秒时.
14.已知一段公路的坡度为1:20,沿着这条公路前进,若上升的高度为2m,则前进了________米
15.若反比例函数y=的图象与一次函数y=﹣x+3的图象的一个交点到x轴的距离为1,则k=_____.
16.如图,国庆节期间,小明一家自驾到某景区C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶8千米至B地,再沿北偏东45°方向行驶一段距离到达景区C,小明发现景区C恰好在A地的正北方向,则B,C两地的距离为_____.
17.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点(1,0)作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…依次进行下去,则点的坐标为_________.
18.计算:﹣tan60°=_____.
三、解答题(共78分)
19.(8分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,连接BD.
(1)求证:∠A=∠CBD.
(2)若AB=10,AD=6,M为线段BC上一点,请写出一个BM的值,使得直线DM与⊙O相切,并说明理由.
20.(8分)已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF相交于点G.
(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证:.
(2)如图②,若四边形ABCD是平行四边形,要使成立,完成下列探究过程:
要使,转化成,显然△DEA与△CFD不相似,考虑,需要△DEA∽△DFG,只需∠A=∠________;另一方面,只要,需要△CFD∽△CDG,只需∠CGD=∠________.由此探究出使成立时,∠B与∠EGC应该满足的关系是________.
(3)如图③,若AB=BC=6,AD=CD=8,∠BAD=90°,DE⊥CF,那么的值是多少?(直接写出结果)
21.(8分)为深化课改,落实立德树人目标,某学校设置了以下四门拓展性课程:A.数学思维,B.文学鉴赏,C.红船课程,D.3D打印,规定每位学生选报一门.为了解学生的报名情况,随机抽取了部分学生进行调查,并制作成如下两幅不完整的统计图,请回答下列问题:
(1)求这次被调查的学生人数;
(2)请将条形统计图补充完整;
(3)假如全校有学生1000人,请估计选报“红船课程”的学生人数.
22.(10分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.
(1)求证:∠A=∠DOB;
(2)DE与⊙O有怎样的位置关系?请说明理由.
23.(10分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
24.(10分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.
(1)求抛物线的解析式;
(2)在AC上方的抛物线上有一动点G,如图,当点G运动到某位置时,以AG,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点G的坐标;
(3)若抛物线上存在点P,使得△ACP是以AC为直角边的直角三角形,直接写出所有符合条件的点P的坐标.
25.(12分)在中,分别是的中点,连接
求证:四边形是矩形;
请用无刻度的直尺在图中作出的平分线(保留作图痕迹,不写作法).
26.(12分)如图,在矩形中对角线、相交于点,延长到点,使得四边形是一个平行四边形,平行四边形对角线交、分别为点和点.
(1)证明:;
(2)若,,则线段的长度.
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、B
4、B
5、D
6、B
7、C
8、C
9、C
10、C
11、C
12、C
二、填空题(每题4分,共24分)
13、1
14、.
15、2或﹣1
16、4千米.
17、
18、2.
三、解答题(共78分)
19、(1)证明见解析;(2)BM=,理由见解析.
20、(1)证明见解析;(2)DGF,CDF,∠B+∠EGC=180°;(3).
21、(1)80人 (2)见解析 (3)375
22、(1)见解析;(2)相切,理由见解析
23、(1),;(2)P,.
24、(1)抛物线的解析式为y=﹣x2+3x+4;(2)点G的坐标为(,);(3)点P(2,6)或(﹣2,﹣6).
25、(1)证明见解析;(2)作图见解析.
26、(1)证明见解析;(2).
相关试卷
这是一份北京市崇文区名校2023-2024学年九上数学期末监测模拟试题含答案,共7页。试卷主要包含了如图,在中,,,,,则的长为,在中,,若已知,则等内容,欢迎下载使用。
这是一份北京市北京昌平临川育人学校2023-2024学年九上数学期末监测模拟试题含答案,共9页。试卷主要包含了下列事件,如图所示的工件,其俯视图是, 见解析,B2,C2等内容,欢迎下载使用。
这是一份北京三中学2023-2024学年九上数学期末监测模拟试题含答案,共7页。