内蒙古呼和浩特实验中学2023-2024学年数学九上期末经典模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.抛物线如图所示,给出以下结论:①,②,③,④,⑤,其中正确的个数是( )
A.2个B.3个C.4个D.5个
2.已知m,n是关于x的一元二次方程的两个解,若,则a的值为( )
A.﹣10B.4C.﹣4D.10
3.2的相反数是( )
A.B.C.D.
4.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( )
A.B.C.D.
5.如图,将绕点逆时针旋转70°到的位置,若,则( )
A.45°B.40°C.35°D.30°
6.下列函数属于二次函数的是( )
A.y=x﹣B.y=(x﹣3)2﹣x2
C.y=﹣xD.y=2(x+1)2﹣1
7.若均为锐角,且,则( ).
A.B.
C.D.
8.一元二次方程x2-8x-1=0配方后为( )
A.(x-4)2=17B.(x+4)2=15
C.(x+4)2=17D.(x-4)2=17或(x+4)2=17
9.向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
A.第秒B.第秒C.第秒D.第秒
10.把函数y=﹣3x2的图象向右平移2个单位,所得到的新函数的表达式是( )
A.y=﹣3x2﹣2B.y=﹣3(x﹣2)2C.y=﹣3x2+2D.y=﹣3(x+2)2
11.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为( )
A.(54+10) cmB.(54+10) cmC.64 cmD.54cm
12.如图,在平面直角坐标系中抛物线y=(x+1)(x﹣3)与x轴相交于A、B两点,若在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,则m的值是( )
A.6B.8C.12D.16
二、填空题(每题4分,共24分)
13.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.
14.抛物线y=(x﹣1)(x﹣3)的对称轴是直线x=_____.
15.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系是h=+20t+1,若此礼炮在升空到最高处时引爆,到引爆需要的时间为_____s.
16.计算:sin45°=____________.
17.一个圆锥的母线长为5cm,底面圆半径为3 cm,则这个圆锥的侧面积是____ cm².(结果保留).
18.在中,,点在直线上,,点为边的中点,连接,射线交于点,则的值为________.
三、解答题(共78分)
19.(8分)我区某校组织了一次“诗词大会”,张老师为了选拔本班学生参加,对本班全体学生诗词的掌握情况进行了调查,并将调查结果分为了三类:A:好,B:中,C:差.请根据图中信息,解答下列问题:
(1)全班学生共有 人;
(2)扇形统计图中,B类占的百分比为 %,C类占的百分比为 %;
(3)将上面的条形统计图补充完整;
(4)小明被选中参加了比赛.比赛中有一道必答题是:从下表所示的九宫格中选取七个字组成一句诗,其答案为“便引诗情到碧霄”.小明回答该问题时,对第四个字是选“情”还是选“青”,第七个字是选“霄”还是选“宵”,都难以抉择,若分别随机选择,请用列表或画树状图的方法求小明回答正确的概率.
20.(8分)某商场经销一种布鞋,已知这种布鞋的成本价为每双30元.市场调查发现,这种布鞋每天的销售量y(单位:双)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种布鞋每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种布鞋销售单价定价为多少元时,每天的销售利润最大?最大利润是多少元?
21.(8分)某商场销售一种电子产品,进价为元/件.根据以往经验:当销售单价为元时,每天的销售量是件;销售单价每上涨元,每天的销售量就减少件.
(1)销售该电子产品时每天的销售量(件)与销售单价(元)之间的函数关系式为______;
(2)商场决定每销售件该产品,就捐赠元给希望工程,每天扣除捐赠后可获得最大利润为元,求的值.
22.(10分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=1.
(1)求该抛物线的函数解析式;
(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=1:2时,求点D的坐标.
(1)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.
23.(10分)如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x﹣4与反比例函数y=交于点A,交y轴于C点.
(1)求k的值;
(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;
(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.
24.(10分)已知:△ABC中∠ACB=90°,E在AB上,以AE为直径的⊙O与BC相切于D,与AC相交于F,连接AD.
(1)求证:AD平分∠BAC;
(2)若DF∥AB,则BD与CD有怎样的数量关系?并证明你的结论.
25.(12分)关于的一元二次方程 有两个不等实根,.
(1)求实数的取值范围;
(2)若方程两实根,满足,求的值。
26.(12分)在一个不透明的布袋里装有3个标有1,2,3的小球,它们的形状,大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,然后放回袋中搅匀,王芳再从袋中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y).
(1)用列表或画树状图(只选其中一种)的方法表示出点M所有可能的坐标;
(2)求点M(x,y)在函数y=x2图象上的概率.
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、D
4、D
5、D
6、D
7、D
8、A
9、C
10、B
11、C
12、B
二、填空题(每题4分,共24分)
13、1.
14、1
15、1
16、1.
17、15π
18、或
三、解答题(共78分)
19、(1)40;(2)60,15;(3)补全条形统计图见解析;(4)小明回答正确的概率是.
20、(1)w=﹣x2+90x﹣1800;(2)这种布鞋销售单价定价为45元时,每天的销售利润最大,最大利润是,225元
21、(1);(2)a=1.
22、(1)y=﹣x2+2x+1;(2)点D(1,4)或(2,1);(1)当点P在x轴上方时,点P(,);当点P在x轴下方时,点(﹣,﹣)
23、(1)-4;(2)见解析;(3)点E的坐标为(﹣4,1).
24、 (1)见解析;(2) BD=2CD证明见解析
25、(1);(2).
26、(1)(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),见解析;(2)
情
到
碧
霄
诗
青
引
宵
便
鲍沟中学2023-2024学年九上数学期末经典模拟试题含答案: 这是一份鲍沟中学2023-2024学年九上数学期末经典模拟试题含答案,共9页。试卷主要包含了下列二次函数中,顶点坐标为,下列函数是关于的反比例函数的是,若,则的值为等内容,欢迎下载使用。
呼和浩特市重点中学2023-2024学年数学九上期末经典模拟试题含答案: 这是一份呼和浩特市重点中学2023-2024学年数学九上期末经典模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,已知反比例函数的图象经过点,如图等内容,欢迎下载使用。
2023-2024学年浙江省温州实验中学九上数学期末经典模拟试题含答案: 这是一份2023-2024学年浙江省温州实验中学九上数学期末经典模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。