2023-2024学年贵州省都匀市第六中学九上数学期末复习检测试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.如图,四边形ABCD和四边形A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=3:5,则四边形ABCD和四边形A'B'C'D'的面积比为( )
A.3:5B.3:8C.9:25D.:
2.下列四个图案中,不是轴对称图案的是( )
A.B.
C.D.
3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②b2﹣4ac>0;③b>0;④4a﹣2b+c<0;⑤a+c<,其中正确结论的个数是( )
A.②③④B.①②⑤C.①②④D.②③⑤
4.如图,直线y=2x与双曲线在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为( )
A.(1.0)B.(1.0)或(﹣1.0)
C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)
5.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为( )
A.B.C.D.
6.如图,为的直径,为上一点,弦平分,交于点,,,则的长为( )
A.2.5B.2.8C.3D.3.2
7.二次函数y=x2-2x+3的最小值是( )
A.-2 B.2 C.-1 D.1
8.下列图形中,既是中心对称图形又是轴对称图形的有几个( )
A.4个B.3个C.2个D.1个
9.如果(m+2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为( )
A.2或-2B.2C.-2D.0
10.己知的半径为,点是线段的中点,当时,点与的位置关系是( )
A.点在外B.点在上C.点在内D.不能确定
11.如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于( )
A.8B.10C.12D.18
12.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( )
A.小于B.等于C.大于D.无法确定
二、填空题(每题4分,共24分)
13.当时,二次函数有最大值4,则实数的值为________.
14.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数和的图象交于点A和点B,若C为x轴上任意一点,连接AC,BC,则的面积是________.
15.化简:______.
16.二次函数(其中m>0),下列命题:①该图象过点(6,0);②该二次函数顶点在第三象限;③当x>3时,y随x的增大而增大;④若当x
18.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为 m(结果保留根号).
三、解答题(共78分)
19.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)已知AB=4,AE=1.求BF的长.
20.(8分)如图,在的正方形网格中,网线的交点称为格点,点,,都是格点.已知每个小正方形的边长为1.
(1)画出的外接圆,并直接写出的半径是多少.
(2)连结,在网络中画出一个格点,使得是直角三角形,且点在上.
21.(8分)如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.
(1)求抛物线的解析式;
(2)当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S的最大值?
(3)在y轴上确定一点M,使点M到D、B两点距离之和d=MD+MB最小,求点M的坐标.
22.(10分)市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=45时,y=10;x=55时,y=1.在销售过程中,每天还要支付其他费用500元.
(1)求出y与x的函数关系式,并写出自变量x的取值范围;
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;
(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?
23.(10分)如图,Rt△FHG中,H=90°,FH∥x轴,,则称Rt△FHG为准黄金直角三角形(G在F的右上方).已知二次函数的图像与x轴交于A、B两点,与y轴交于点E(0,),顶点为C(1,),点D为二次函数图像的顶点.
(1)求二次函数y1的函数关系式;
(2)若准黄金直角三角形的顶点F与点A重合、G落在二次函数y1的图像上,求点G的坐标及△FHG的面积;
(3)设一次函数y=mx+m与函数y1、y2的图像对称轴右侧曲线分别交于点P、Q. 且P、Q两点分别与准黄金直角三角形的顶点F、G重合,求m的值并判断以C、D、Q、P为顶点的四边形形状,请说明理由.
24.(10分)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.
(1)随机掷一次骰子,则棋子跳动到点C处的概率是
(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.
25.(12分)如图,无人机在空中处测得地面、两点的俯角分别为60〫、45〫,如果无人机距地面高度米,点、、在同水平直线上,求、两点间的距离.(结果保留根号)
26.(12分)如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为),另外三边利用学校现有总长的铁栏围成,留出2米长门供学生进出.若围成的面积为,试求出自行车车棚的长和宽.
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、B
4、D
5、B
6、B
7、B
8、D
9、B
10、C
11、C
12、B
二、填空题(每题4分,共24分)
13、2或
14、1
15、
16、①④
17、<.
18、
三、解答题(共78分)
19、(1)证明见解析;(2)2.
20、(1)作图见解析,半径为;(2)作图见解析
21、(1)y=x2﹣4x+;(2)S=﹣(x﹣3)2+(1<x<1),当x=3时,S有最大值;(3)(0,﹣)
22、(1)y=﹣2x+200(30≤x≤60);(2)W=﹣2x2+260x﹣6500;(3)当销售单价为60元时,该公司日获利最大为110元.
23、(1)y=(x-1)2-4;(2)点G坐标为(3.6,2.76),S△FHG=6.348;(3)m=0.6,四边形CDPQ为平行四边形,理由见解析.
24、(1);(2)棋子最终跳动到点C处的概率为.
25、A、B两点间的距离为100(1+)米
26、若围成的面积为,自行车车棚的长和宽分别为10米,18米.
2023-2024学年贵州省都匀市第六中学数学九上期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年贵州省都匀市第六中学数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了如图,,则下列比例式错误的是,关于x的一元二次方程x2+,方程的根是等内容,欢迎下载使用。
贵州省都匀市第六中学2023-2024学年数学九上期末经典模拟试题含答案: 这是一份贵州省都匀市第六中学2023-2024学年数学九上期末经典模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,27的立方根是,已知点等内容,欢迎下载使用。
2023-2024学年贵州省都匀市第六中学九年级数学第一学期期末检测模拟试题含答案: 这是一份2023-2024学年贵州省都匀市第六中学九年级数学第一学期期末检测模拟试题含答案,共7页。