2023-2024学年福建省福州仓山区七校联考九上数学期末经典试题含答案
展开这是一份2023-2024学年福建省福州仓山区七校联考九上数学期末经典试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,关于抛物线,下列说法错误的是 ( )
A.顶点坐标为(1,)
B.对称轴是直线x=l
C.开口方向向上
D.当x>1时,y随x的增大而减小
2.如图,BC是⊙O的弦,OA⊥BC,∠AOB=55°,则∠ADC的度数是( )
A.25°B.55°C.45°D.27.5°
3.阅读理解:已知两点,则线段的中点的坐标公式为:,.如图,已知点为坐标原点,点,经过点,点为弦的中点.若点,则有满足等式:.设,则满足的等式是( )
A.B.
C.D.
4.如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(-1,-1)、(2,-1),点B的横坐标的最大值为3,则点A的横坐标的最小值为( )
A.-3B.-2.5C.-2D.-1.5
5.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正确的有( )
A.1个B.2个C.3个D.4个
6.已知抛物线与二次函数的图像相同,开口方向相同,且顶点坐标为,它对应的函数表达式为( )
A.B.
C.D.
7.抛物线y=x2﹣2x+2的顶点坐标为( )
A.(1,1)B.(﹣1,1)C.(1,3)D.(﹣1,3)
8.已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是( )
A.abc<0B.-3a+c<0
C.b2-4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c
9.若关于x的一元二次方程有两个不相等的实数根,则m的值可能是( )
A.3B.2C.1D.0
10.从一个不透明的口袋中摸出红球的概率为,已知口袋中的红球是3个,则袋中共有球的个数是( )
A.5B.8C.10D.15
11.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( )
A.B.C.D.
12.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
下面有三个推断:
①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.1.
其中合理的是( )
A.①B.②C.①②D.①③
二、填空题(每题4分,共24分)
13.平面直角坐标系内的三个点A(1,-3)、B(0,-3)、C(2,-3),___ 确定一个圆.(填“能”或“不能”)
14.若、为关于x的方程(m≠0)的两个实数根,则的值为________.
15.抛掷一枚质地均匀的硬币一次,正面朝上的概率是_____.
16.如图,点D,E分别在AB、AC上,且∠ABC=∠AED.若DE=2,AE=3,BC=6,则AB的长为_____.
17.如图,在矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=8,DF=3FC,则BC=__________.
18.如图,在中,、分别是、的中点,点在上,是的平分线,若,则的度数是________.
三、解答题(共78分)
19.(8分)在直角三角形中,,点为上的一点,以点为圆心,为半径的圆弧与相切于点,交于点,连接.
(1)求证:平分;
(2)若,求圆弧的半径;
(3)在的情况下,若,求阴影部分的面积(结果保留和根号)
20.(8分)已知在△ABC中,∠A=∠B=30°.
(1)尺规作图:在线段AB上找一点O,以O为圆心作圆,使⊙O经过A,C两点;
(2)在(1)中所作的图中,求证:BC是⊙O的切线.
21.(8分)如图,等边△ABC内接于⊙O,P是上任一点(点P不与点A、B重合),连AP、BP,过点C作CM∥BP交PA的延长线于点M.
(1)填空:∠APC= 度,∠BPC= 度;
(2)求证:△ACM≌△BCP;
(3)若PA=1,PB=2,求梯形PBCM的面积.
22.(10分)已知:△ABC在平面直角坐标系内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是__________;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;四边形AA2C2C的面积是__________平方单位.
23.(10分)如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.
(1)当PE⊥AB,PF⊥BC时,如图1,则的值为 ;
(2)现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求的值;
(3)在(2)的基础上继续旋转,当60°<α<90°,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论.
24.(10分)如图,是的直径,为上一点,于点,交于点,与交于点为延长线上一点,且.
(1)求证:是的切线;
(2)求证:;
(3)若,求的长.
25.(12分)某服装店用1440元购进一批服装,并以每件46元的价格全部售完.由于服装畅销,服装店又用3240元,再次以比第一次进价多4元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.
(1)该服装店第一次购买了此种服装多少件?
(2)两次出售服装共盈利多少元?
26.(12分)国庆期间,某风景区推出两种旅游观光活动付费方式:若人数不超过20人,人均缴费500元;若人数超过20人,则每增加一位旅客,人均收费降低10元,但是人均收费不低于350元.现在某单位在国庆期间组织一批贡献突出的职工到该景区旅游观光,支付了12000元观光费,请问:该单位一共组织了多少位职工参加旅游观光活动?
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、D
4、C
5、C
6、D
7、A
8、B
9、D
10、D
11、A
12、B
二、填空题(每题4分,共24分)
13、不能
14、-2
15、
16、1
17、6+1.
18、100°
三、解答题(共78分)
19、(1)证明见解析;(2)2;(3).
20、(1)见解析;(2)见解析
21、(1)60;60;(2)证明见解析;(3).
22、 (1)画图见解析,(2,–2); (2)画图见解析,7.1.
23、(1);(2);(3)变化.证明见解析.
24、(1)证明见解析;(2)证明见解析;(3)
25、(1)45;(2)1.
26、30
相关试卷
这是一份2023-2024学年福建省福州市仓山区九上数学期末检测模拟试题含答案,共7页。试卷主要包含了下列方程中,是一元二次方程的是等内容,欢迎下载使用。
这是一份2023-2024学年福建省福州马尾区四校联考九上数学期末经典试题含答案,共8页。试卷主要包含了下列事件中,是随机事件的是,反比例函数y=﹣的图象在等内容,欢迎下载使用。
这是一份福建省福州仓山区七校联考2023-2024学年八年级数学第一学期期末考试模拟试题含答案,共8页。试卷主要包含了下列各式中,正确的是,下列运算正确的是,下列命题是真命题的是,下面是甲、乙两人10次射击成绩等内容,欢迎下载使用。

